Standard

Strong computability of slices over the logic Gl. / Maksimova, Larisa L.vovna; Yun, Veta Fedorovna.

в: Сибирские электронные математические известия, Том 15, 01.01.2018, стр. 35-47.

Результаты исследований: Научные публикации в периодических изданияхстатьяРецензирование

Harvard

Maksimova, LLV & Yun, VF 2018, 'Strong computability of slices over the logic Gl', Сибирские электронные математические известия, Том. 15, стр. 35-47. https://doi.org/10.17377/semi.2018.15.005

APA

Maksimova, L. L. V., & Yun, V. F. (2018). Strong computability of slices over the logic Gl. Сибирские электронные математические известия, 15, 35-47. https://doi.org/10.17377/semi.2018.15.005

Vancouver

Maksimova LLV, Yun VF. Strong computability of slices over the logic Gl. Сибирские электронные математические известия. 2018 янв. 1;15:35-47. doi: 10.17377/semi.2018.15.005

Author

Maksimova, Larisa L.vovna ; Yun, Veta Fedorovna. / Strong computability of slices over the logic Gl. в: Сибирские электронные математические известия. 2018 ; Том 15. стр. 35-47.

BibTeX

@article{101fe05b198b41ae91e5eddbaeabfab3,
title = "Strong computability of slices over the logic Gl",
abstract = "In [2] the classification of extensions of the minimal logic J using slices was introduced and decidability of the classification was proved. We will consider extensions of the logic Gl = J + (A V ¬A). The logic Gl and its extensions have been studied in [8, 9]. In [6], it is established that the logic Gl is strongly recognizable over J, and the family of extensions of the logic Gl is strongly decidable over J. In this paper we prove strong decidability of the classification over Gl: for every finite set Rul of axiom schemes and rules of inference, it is possible to efficiently calculate the slice number of the calculus obtained by adding Rul as new axioms and rules to Gl.",
keywords = "Decidability, Kripke frame, Recognizable logic, Slices, The minimal logic, The minimal logic, slices, Kripke frame, decidability, recognizable logic",
author = "Maksimova, {Larisa L.vovna} and Yun, {Veta Fedorovna}",
year = "2018",
month = jan,
day = "1",
doi = "10.17377/semi.2018.15.005",
language = "English",
volume = "15",
pages = "35--47",
journal = "Сибирские электронные математические известия",
issn = "1813-3304",
publisher = "Sobolev Institute of Mathematics",

}

RIS

TY - JOUR

T1 - Strong computability of slices over the logic Gl

AU - Maksimova, Larisa L.vovna

AU - Yun, Veta Fedorovna

PY - 2018/1/1

Y1 - 2018/1/1

N2 - In [2] the classification of extensions of the minimal logic J using slices was introduced and decidability of the classification was proved. We will consider extensions of the logic Gl = J + (A V ¬A). The logic Gl and its extensions have been studied in [8, 9]. In [6], it is established that the logic Gl is strongly recognizable over J, and the family of extensions of the logic Gl is strongly decidable over J. In this paper we prove strong decidability of the classification over Gl: for every finite set Rul of axiom schemes and rules of inference, it is possible to efficiently calculate the slice number of the calculus obtained by adding Rul as new axioms and rules to Gl.

AB - In [2] the classification of extensions of the minimal logic J using slices was introduced and decidability of the classification was proved. We will consider extensions of the logic Gl = J + (A V ¬A). The logic Gl and its extensions have been studied in [8, 9]. In [6], it is established that the logic Gl is strongly recognizable over J, and the family of extensions of the logic Gl is strongly decidable over J. In this paper we prove strong decidability of the classification over Gl: for every finite set Rul of axiom schemes and rules of inference, it is possible to efficiently calculate the slice number of the calculus obtained by adding Rul as new axioms and rules to Gl.

KW - Decidability

KW - Kripke frame

KW - Recognizable logic

KW - Slices

KW - The minimal logic

KW - The minimal logic

KW - slices

KW - Kripke frame

KW - decidability

KW - recognizable logic

UR - http://www.scopus.com/inward/record.url?scp=85074902291&partnerID=8YFLogxK

UR - https://www.elibrary.ru/item.asp?id=36998686

U2 - 10.17377/semi.2018.15.005

DO - 10.17377/semi.2018.15.005

M3 - Article

AN - SCOPUS:85074902291

VL - 15

SP - 35

EP - 47

JO - Сибирские электронные математические известия

JF - Сибирские электронные математические известия

SN - 1813-3304

ER -

ID: 22322560