Standard

Stability of Poiseuille-type Flows for an MHD Model of an Incompressible Polymeric Fluid. / Blokhin, A. M.; Tkachev, D. L.

в: Fluid Dynamics, Том 54, № 8, 01.12.2019, стр. 1051-1058.

Результаты исследований: Научные публикации в периодических изданияхстатьяРецензирование

Harvard

APA

Vancouver

Blokhin AM, Tkachev DL. Stability of Poiseuille-type Flows for an MHD Model of an Incompressible Polymeric Fluid. Fluid Dynamics. 2019 дек. 1;54(8):1051-1058. doi: 10.1134/S0015462819080020

Author

Blokhin, A. M. ; Tkachev, D. L. / Stability of Poiseuille-type Flows for an MHD Model of an Incompressible Polymeric Fluid. в: Fluid Dynamics. 2019 ; Том 54, № 8. стр. 1051-1058.

BibTeX

@article{b1e9834826d944798eb4960f2598f1c8,
title = "Stability of Poiseuille-type Flows for an MHD Model of an Incompressible Polymeric Fluid",
abstract = "A new rheological model, an extension of the Pokrovskii-Vinogradov rheological model, describing the flows of melts and solutions of incompressible viscoelastic polymeric media in external uniform magnetic field in the presence of a temperature drop and conduction current is studied. An asymptotic representation of the linear problem spectrum resulting from the linearization of the initial boundary value problem in an infinite plane channel about a Poiseuille-type flow is obtained. For this Poiseuille-type flow the parameter domain of linear Lyapunov{\textquoteright}s stability is determined.",
keywords = "conduction current, linear Lyapunov stability, magnetic field, model of an incompressible viscoelastic polymeric fluid, Poiseuille-type flow, Pokrovskii-Vinogradov model, spectrum of linearized mixed problem, temperature",
author = "Blokhin, {A. M.} and Tkachev, {D. L.}",
year = "2019",
month = dec,
day = "1",
doi = "10.1134/S0015462819080020",
language = "English",
volume = "54",
pages = "1051--1058",
journal = "Fluid Dynamics",
issn = "0015-4628",
publisher = "Maik Nauka-Interperiodica Publishing",
number = "8",

}

RIS

TY - JOUR

T1 - Stability of Poiseuille-type Flows for an MHD Model of an Incompressible Polymeric Fluid

AU - Blokhin, A. M.

AU - Tkachev, D. L.

PY - 2019/12/1

Y1 - 2019/12/1

N2 - A new rheological model, an extension of the Pokrovskii-Vinogradov rheological model, describing the flows of melts and solutions of incompressible viscoelastic polymeric media in external uniform magnetic field in the presence of a temperature drop and conduction current is studied. An asymptotic representation of the linear problem spectrum resulting from the linearization of the initial boundary value problem in an infinite plane channel about a Poiseuille-type flow is obtained. For this Poiseuille-type flow the parameter domain of linear Lyapunov’s stability is determined.

AB - A new rheological model, an extension of the Pokrovskii-Vinogradov rheological model, describing the flows of melts and solutions of incompressible viscoelastic polymeric media in external uniform magnetic field in the presence of a temperature drop and conduction current is studied. An asymptotic representation of the linear problem spectrum resulting from the linearization of the initial boundary value problem in an infinite plane channel about a Poiseuille-type flow is obtained. For this Poiseuille-type flow the parameter domain of linear Lyapunov’s stability is determined.

KW - conduction current

KW - linear Lyapunov stability

KW - magnetic field

KW - model of an incompressible viscoelastic polymeric fluid

KW - Poiseuille-type flow

KW - Pokrovskii-Vinogradov model

KW - spectrum of linearized mixed problem

KW - temperature

UR - http://www.scopus.com/inward/record.url?scp=85077494317&partnerID=8YFLogxK

U2 - 10.1134/S0015462819080020

DO - 10.1134/S0015462819080020

M3 - Article

AN - SCOPUS:85077494317

VL - 54

SP - 1051

EP - 1058

JO - Fluid Dynamics

JF - Fluid Dynamics

SN - 0015-4628

IS - 8

ER -

ID: 23123771