Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
Solutions symétriques du problème de Leray. / Pukhnachev, Vladislav.
в: Comptes Rendus Mathematique, Том 355, № 1, 01.01.2017, стр. 113-117.Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
}
TY - JOUR
T1 - Solutions symétriques du problème de Leray
AU - Pukhnachev, Vladislav
PY - 2017/1/1
Y1 - 2017/1/1
N2 - A stationary boundary-value problem for the Navier–Stokes equations of an incompressible fluid in a domain of a spherical layer type is considered. The velocity vector on the boundary is given. The solvability of this problem was proven by Jean Leray (1933) under an additional condition of a zero flux through each connected component of the flow domain boundary. The following problem is open up to now: does a solution to the flux problem exist if only the necessary condition of a zero total flux is satisfied? The present communication is devoted to the consideration of the Leray problem in a spherical-layer-type domain. An a priori estimate of the solution under the condition of flow symmetry with respect to a plane is obtained. This estimate implies the solvability of the problem.
AB - A stationary boundary-value problem for the Navier–Stokes equations of an incompressible fluid in a domain of a spherical layer type is considered. The velocity vector on the boundary is given. The solvability of this problem was proven by Jean Leray (1933) under an additional condition of a zero flux through each connected component of the flow domain boundary. The following problem is open up to now: does a solution to the flux problem exist if only the necessary condition of a zero total flux is satisfied? The present communication is devoted to the consideration of the Leray problem in a spherical-layer-type domain. An a priori estimate of the solution under the condition of flow symmetry with respect to a plane is obtained. This estimate implies the solvability of the problem.
KW - NAVIER-STOKES EQUATIONS
KW - EXISTENCE
UR - http://www.scopus.com/inward/record.url?scp=85007418018&partnerID=8YFLogxK
U2 - 10.1016/j.crma.2016.11.010
DO - 10.1016/j.crma.2016.11.010
M3 - статья
AN - SCOPUS:85007418018
VL - 355
SP - 113
EP - 117
JO - Comptes Rendus Mathematique
JF - Comptes Rendus Mathematique
SN - 1631-073X
IS - 1
ER -
ID: 9029163