Standard

Semicontinuity under Convergence of Homeomorphisms in of the Operator Distortion Function. / Vodopyanov, S. K.; Sboev, D. A.

в: Siberian Mathematical Journal, Том 65, № 4, 16.07.2024, стр. 737-750.

Результаты исследований: Научные публикации в периодических изданияхстатьяРецензирование

Harvard

APA

Vancouver

Vodopyanov SK, Sboev DA. Semicontinuity under Convergence of Homeomorphisms in of the Operator Distortion Function. Siberian Mathematical Journal. 2024 июль 16;65(4):737-750. doi: 10.1134/S0037446624040013

Author

Vodopyanov, S. K. ; Sboev, D. A. / Semicontinuity under Convergence of Homeomorphisms in of the Operator Distortion Function. в: Siberian Mathematical Journal. 2024 ; Том 65, № 4. стр. 737-750.

BibTeX

@article{823221bb692945e988cdad4e9cac5720,
title = "Semicontinuity under Convergence of Homeomorphisms in of the Operator Distortion Function",
abstract = "Studying the convergence inof homeomorphisms of classto some limit mapping,under additional assumptions,we prove thatthe norm of the operator distortion function is lower semicontinuous.We estimatethe operator distortion function for.",
keywords = "517.518:517.548, Carnot group, homeomorphism of class, lower semicontinuity",
author = "Vodopyanov, {S. K.} and Sboev, {D. A.}",
note = "The work was supported by the Mathematical Center in Akademgorodok under Agreement 075\u201315\u20132022\u2013282 with the Ministry of Science and Higher Education of the Russian Federation.",
year = "2024",
month = jul,
day = "16",
doi = "10.1134/S0037446624040013",
language = "English",
volume = "65",
pages = "737--750",
journal = "Siberian Mathematical Journal",
issn = "0037-4466",
publisher = "MAIK NAUKA/INTERPERIODICA/SPRINGER",
number = "4",

}

RIS

TY - JOUR

T1 - Semicontinuity under Convergence of Homeomorphisms in of the Operator Distortion Function

AU - Vodopyanov, S. K.

AU - Sboev, D. A.

N1 - The work was supported by the Mathematical Center in Akademgorodok under Agreement 075\u201315\u20132022\u2013282 with the Ministry of Science and Higher Education of the Russian Federation.

PY - 2024/7/16

Y1 - 2024/7/16

N2 - Studying the convergence inof homeomorphisms of classto some limit mapping,under additional assumptions,we prove thatthe norm of the operator distortion function is lower semicontinuous.We estimatethe operator distortion function for.

AB - Studying the convergence inof homeomorphisms of classto some limit mapping,under additional assumptions,we prove thatthe norm of the operator distortion function is lower semicontinuous.We estimatethe operator distortion function for.

KW - 517.518:517.548

KW - Carnot group

KW - homeomorphism of class

KW - lower semicontinuity

UR - https://www.scopus.com/record/display.uri?eid=2-s2.0-85198617363&origin=inward&txGid=39444ffcc2f8b43023d5982ce235d81b

UR - https://www.mendeley.com/catalogue/c9bed2cc-341c-396e-b855-d51db73bf6dd/

U2 - 10.1134/S0037446624040013

DO - 10.1134/S0037446624040013

M3 - Article

VL - 65

SP - 737

EP - 750

JO - Siberian Mathematical Journal

JF - Siberian Mathematical Journal

SN - 0037-4466

IS - 4

ER -

ID: 60850566