Standard

Semantic modeling of subject domains using precedent and blurry (fuzzy) models. / Yakhyaeva, Gulnara.

в: Journal of Mathematical Sciences (United States), Том 295, № 1, 08.01.2026.

Результаты исследований: Научные публикации в периодических изданияхстатьяРецензирование

Harvard

APA

Vancouver

Yakhyaeva G. Semantic modeling of subject domains using precedent and blurry (fuzzy) models. Journal of Mathematical Sciences (United States). 2026 янв. 8;295(1). doi: 10.1007/s10958-025-08152-x

Author

Yakhyaeva, Gulnara. / Semantic modeling of subject domains using precedent and blurry (fuzzy) models. в: Journal of Mathematical Sciences (United States). 2026 ; Том 295, № 1.

BibTeX

@article{885ddf5a831848efba75a552003a9d21,
title = "Semantic modeling of subject domains using precedent and blurry (fuzzy) models",
abstract = "We propose an approach to semantic modeling based on the four-level framework for knowledge representation. The method constructs a precedent model at the empirical level using precedent knowledge and then fuzzifies it to obtain statistical knowledge at the fourth level. We introduce the mathematical framework for reconstructing a set of precedents from subjective expert assessments and and outlines the characteristics of blurry models.",
author = "Gulnara Yakhyaeva",
year = "2026",
month = jan,
day = "8",
doi = "10.1007/s10958-025-08152-x",
language = "English",
volume = "295",
journal = "Journal of Mathematical Sciences (United States)",
issn = "1072-3374",
publisher = "Springer Nature",
number = "1",

}

RIS

TY - JOUR

T1 - Semantic modeling of subject domains using precedent and blurry (fuzzy) models

AU - Yakhyaeva, Gulnara

PY - 2026/1/8

Y1 - 2026/1/8

N2 - We propose an approach to semantic modeling based on the four-level framework for knowledge representation. The method constructs a precedent model at the empirical level using precedent knowledge and then fuzzifies it to obtain statistical knowledge at the fourth level. We introduce the mathematical framework for reconstructing a set of precedents from subjective expert assessments and and outlines the characteristics of blurry models.

AB - We propose an approach to semantic modeling based on the four-level framework for knowledge representation. The method constructs a precedent model at the empirical level using precedent knowledge and then fuzzifies it to obtain statistical knowledge at the fourth level. We introduce the mathematical framework for reconstructing a set of precedents from subjective expert assessments and and outlines the characteristics of blurry models.

UR - https://www.scopus.com/pages/publications/105027120781

UR - https://www.mendeley.com/catalogue/e0f1f134-66db-3b18-bd5f-37912dc7f994/

U2 - 10.1007/s10958-025-08152-x

DO - 10.1007/s10958-025-08152-x

M3 - Article

VL - 295

JO - Journal of Mathematical Sciences (United States)

JF - Journal of Mathematical Sciences (United States)

SN - 1072-3374

IS - 1

ER -

ID: 74195861