Standard

Search for the direct production of charginos and neutralinos in final states with tau leptons in √s=13TeV pp collisions with the ATLAS detector. / The ATLAS collaboration.

в: European Physical Journal C, Том 78, № 2, 154, 01.02.2018.

Результаты исследований: Научные публикации в периодических изданияхстатьяРецензирование

Harvard

APA

Vancouver

The ATLAS collaboration. Search for the direct production of charginos and neutralinos in final states with tau leptons in √s=13TeV pp collisions with the ATLAS detector. European Physical Journal C. 2018 февр. 1;78(2):154. doi: 10.1140/epjc/s10052-018-5583-9

Author

BibTeX

@article{a5ca1d0ce2fd459c8026de046dca624d,
title = "Search for the direct production of charginos and neutralinos in final states with tau leptons in √s=13TeV pp collisions with the ATLAS detector",
abstract = "A search for the direct production of charginos and neutralinos in final states with at least two hadronically decaying tau leptons is presented. The analysis uses a dataset of pp collisions corresponding to an integrated luminosity of 36.1 fb - 1 , recorded with the ATLAS detector at the Large Hadron Collider at a centre-of-mass energy of 13 TeV. No significant deviation from the expected Standard Model background is observed. Limits are derived in scenarios of pair production and of and production in simplified models where the neutralinos and charginos decay solely via intermediate left-handed staus and tau sneutrinos, and the mass of the τ ~ L state is set to be halfway between the masses of the and the . Chargino masses up to 630 GeV are excluded at 95% confidence level in the scenario of direct production of for a massless . Common and masses up to 760 GeV are excluded in the case of production of and assuming a massless . Exclusion limits for additional benchmark scenarios with large and small mass-splitting between the and the are also studied by varying the τ ~ L mass between the masses of the and the . ",
author = "{The ATLAS collaboration} and M. Aaboud and G. Aad and B. Abbott and O. Abdinov and B. Abeloos and Abidi, {S. H.} and AbouZeid, {O. S.} and Abraham, {N. L.} and H. Abramowicz and H. Abreu and R. Abreu and Y. Abulaiti and Acharya, {B. S.} and S. Adachi and L. Adamczyk and J. Adelman and M. Adersberger and T. Adye and Affolder, {A. A.} and Y. Afik and T. Agatonovic-Jovin and C. Agheorghiesei and Aguilar-Saavedra, {J. A.} and Ahlen, {S. P.} and F. Ahmadov and G. Aielli and S. Akatsuka and H. Akerstedt and {\AA}kesson, {T. P.A.} and E. Akilli and Akimov, {A. V.} and Alberghi, {G. L.} and J. Albert and P. Albicocco and Anisenkov, {A. V.} and Baldin, {E. M.} and Bobrovnikov, {V. S.} and Buzykaev, {A. R.} and Kazanin, {V. F.} and Kharlamov, {A. G.} and T. Kharlamova and Korol, {A. A.} and Maslennikov, {A. L.} and Maximov, {D. A.} and Peleganchuk, {S. V.} and P. Podberezko and Rezanova, {O. L.} and Soukharev, {A. M.} and Talyshev, {A. A.} and Tikhonov, {Yu A.}",
note = "Funding Information: Acknowledgements We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently. We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIEN-CIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF and DNSRC, Denmark; IN2P3-CNRS, CEA-DRF/IRFU, France; SRNSF, Georgia; BMBF, HGF, and MPG, Germany; GSRT, Greece; RGC, Hong Kong SAR, China; ISF, I-CORE and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; NWO, Netherlands; RCN, Norway; MNiSW and NCN, Poland; FCT, Portugal; MNE/IFA, Romania; MES of Russia and NRC KI, Russian Federation; JINR; MESTD, Serbia; MSSR, Slovakia; ARRS and MIZ{\v S}, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Wallenberg Foundation, Sweden; SERI, SNSF and Cantons of Bern and Geneva, Switzerland; MOST, Taiwan; TAEK, Turkey; STFC, UK; DOE and NSF, USA. In addition, individual groups and members have received support from BCKDF, the Canada Council, CANARIE, CRC, Compute Canada, FQRNT, and the Ontario Innovation Trust, Canada; EPLANET, ERC, ERDF, FP7, Horizon 2020 and Marie Sk{\l}odowska-Curie Actions, European Union; Investissements d{\textquoteright}Avenir Labex and Idex, ANR, R{\'e}gion Auvergne and Fondation Partager le Savoir, France; DFG and AvH Foundation, Germany; Herakleitos, Thales and Aristeia programmes co-financed by EU-ESF and the Greek NSRF; BSF, GIF and Minerva, Israel; BRF, Norway; CERCA Programme Generalitat de Catalunya, Generalitat Valenciana, Spain; the Royal Society and Lever-hulme Trust, UK. The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN, the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA), the Tier-2 facilities worldwide and large non-WLCG resource providers. Major contributors of computing resources are listed in Ref. [98]. Publisher Copyright: {\textcopyright} 2018, CERN for the benefit of the ATLAS collaboration.",
year = "2018",
month = feb,
day = "1",
doi = "10.1140/epjc/s10052-018-5583-9",
language = "English",
volume = "78",
journal = "European Physical Journal C",
issn = "1434-6044",
publisher = "Springer Nature",
number = "2",

}

RIS

TY - JOUR

T1 - Search for the direct production of charginos and neutralinos in final states with tau leptons in √s=13TeV pp collisions with the ATLAS detector

AU - The ATLAS collaboration

AU - Aaboud, M.

AU - Aad, G.

AU - Abbott, B.

AU - Abdinov, O.

AU - Abeloos, B.

AU - Abidi, S. H.

AU - AbouZeid, O. S.

AU - Abraham, N. L.

AU - Abramowicz, H.

AU - Abreu, H.

AU - Abreu, R.

AU - Abulaiti, Y.

AU - Acharya, B. S.

AU - Adachi, S.

AU - Adamczyk, L.

AU - Adelman, J.

AU - Adersberger, M.

AU - Adye, T.

AU - Affolder, A. A.

AU - Afik, Y.

AU - Agatonovic-Jovin, T.

AU - Agheorghiesei, C.

AU - Aguilar-Saavedra, J. A.

AU - Ahlen, S. P.

AU - Ahmadov, F.

AU - Aielli, G.

AU - Akatsuka, S.

AU - Akerstedt, H.

AU - Åkesson, T. P.A.

AU - Akilli, E.

AU - Akimov, A. V.

AU - Alberghi, G. L.

AU - Albert, J.

AU - Albicocco, P.

AU - Anisenkov, A. V.

AU - Baldin, E. M.

AU - Bobrovnikov, V. S.

AU - Buzykaev, A. R.

AU - Kazanin, V. F.

AU - Kharlamov, A. G.

AU - Kharlamova, T.

AU - Korol, A. A.

AU - Maslennikov, A. L.

AU - Maximov, D. A.

AU - Peleganchuk, S. V.

AU - Podberezko, P.

AU - Rezanova, O. L.

AU - Soukharev, A. M.

AU - Talyshev, A. A.

AU - Tikhonov, Yu A.

N1 - Funding Information: Acknowledgements We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently. We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIEN-CIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF and DNSRC, Denmark; IN2P3-CNRS, CEA-DRF/IRFU, France; SRNSF, Georgia; BMBF, HGF, and MPG, Germany; GSRT, Greece; RGC, Hong Kong SAR, China; ISF, I-CORE and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; NWO, Netherlands; RCN, Norway; MNiSW and NCN, Poland; FCT, Portugal; MNE/IFA, Romania; MES of Russia and NRC KI, Russian Federation; JINR; MESTD, Serbia; MSSR, Slovakia; ARRS and MIZŠ, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Wallenberg Foundation, Sweden; SERI, SNSF and Cantons of Bern and Geneva, Switzerland; MOST, Taiwan; TAEK, Turkey; STFC, UK; DOE and NSF, USA. In addition, individual groups and members have received support from BCKDF, the Canada Council, CANARIE, CRC, Compute Canada, FQRNT, and the Ontario Innovation Trust, Canada; EPLANET, ERC, ERDF, FP7, Horizon 2020 and Marie Skłodowska-Curie Actions, European Union; Investissements d’Avenir Labex and Idex, ANR, Région Auvergne and Fondation Partager le Savoir, France; DFG and AvH Foundation, Germany; Herakleitos, Thales and Aristeia programmes co-financed by EU-ESF and the Greek NSRF; BSF, GIF and Minerva, Israel; BRF, Norway; CERCA Programme Generalitat de Catalunya, Generalitat Valenciana, Spain; the Royal Society and Lever-hulme Trust, UK. The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN, the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA), the Tier-2 facilities worldwide and large non-WLCG resource providers. Major contributors of computing resources are listed in Ref. [98]. Publisher Copyright: © 2018, CERN for the benefit of the ATLAS collaboration.

PY - 2018/2/1

Y1 - 2018/2/1

N2 - A search for the direct production of charginos and neutralinos in final states with at least two hadronically decaying tau leptons is presented. The analysis uses a dataset of pp collisions corresponding to an integrated luminosity of 36.1 fb - 1 , recorded with the ATLAS detector at the Large Hadron Collider at a centre-of-mass energy of 13 TeV. No significant deviation from the expected Standard Model background is observed. Limits are derived in scenarios of pair production and of and production in simplified models where the neutralinos and charginos decay solely via intermediate left-handed staus and tau sneutrinos, and the mass of the τ ~ L state is set to be halfway between the masses of the and the . Chargino masses up to 630 GeV are excluded at 95% confidence level in the scenario of direct production of for a massless . Common and masses up to 760 GeV are excluded in the case of production of and assuming a massless . Exclusion limits for additional benchmark scenarios with large and small mass-splitting between the and the are also studied by varying the τ ~ L mass between the masses of the and the .

AB - A search for the direct production of charginos and neutralinos in final states with at least two hadronically decaying tau leptons is presented. The analysis uses a dataset of pp collisions corresponding to an integrated luminosity of 36.1 fb - 1 , recorded with the ATLAS detector at the Large Hadron Collider at a centre-of-mass energy of 13 TeV. No significant deviation from the expected Standard Model background is observed. Limits are derived in scenarios of pair production and of and production in simplified models where the neutralinos and charginos decay solely via intermediate left-handed staus and tau sneutrinos, and the mass of the τ ~ L state is set to be halfway between the masses of the and the . Chargino masses up to 630 GeV are excluded at 95% confidence level in the scenario of direct production of for a massless . Common and masses up to 760 GeV are excluded in the case of production of and assuming a massless . Exclusion limits for additional benchmark scenarios with large and small mass-splitting between the and the are also studied by varying the τ ~ L mass between the masses of the and the .

UR - http://www.scopus.com/inward/record.url?scp=85042530255&partnerID=8YFLogxK

UR - https://www.mendeley.com/catalogue/44b399fa-9109-317f-b5e5-f83315a62324/

U2 - 10.1140/epjc/s10052-018-5583-9

DO - 10.1140/epjc/s10052-018-5583-9

M3 - Article

C2 - 31264997

AN - SCOPUS:85042530255

VL - 78

JO - European Physical Journal C

JF - European Physical Journal C

SN - 1434-6044

IS - 2

M1 - 154

ER -

ID: 41273742