Standard

Search for single production of a vectorlike T quark decaying into a Higgs boson and top quark with fully hadronic final states using the ATLAS detector. / The ATLAS collaboration.

в: Physical Review D, Том 105, № 9, 092012, 01.05.2022.

Результаты исследований: Научные публикации в периодических изданияхстатьяРецензирование

Harvard

APA

Vancouver

The ATLAS collaboration. Search for single production of a vectorlike T quark decaying into a Higgs boson and top quark with fully hadronic final states using the ATLAS detector. Physical Review D. 2022 май 1;105(9):092012. doi: 10.1103/PhysRevD.105.092012

Author

BibTeX

@article{0668cfbb41eb4448bfe5a8a2c7493cfa,
title = "Search for single production of a vectorlike T quark decaying into a Higgs boson and top quark with fully hadronic final states using the ATLAS detector",
abstract = "A search is made for a vectorlike T quark decaying into a Higgs boson and a top quark in 13 TeV proton-proton collisions using the ATLAS detector at the Large Hadron Collider with a data sample corresponding to an integrated luminosity of 139 fb-1. The Higgs-boson and top-quark candidates are identified in the all-hadronic decay mode, where H→bb¯ and t→bW→bqq¯′ are reconstructed as large-radius jets. The candidate Higgs boson, top quark, and associated B hadrons are identified using tagging algorithms. No significant excess is observed above the background, so limits are set on the production cross section of a singlet T quark at 95% confidence level, depending on the mass mT and coupling κT of the vectorlike T quark to Standard Model particles. In the considered mass range between 1.0 and 2.3 TeV, the upper limit on the allowed coupling values increases with mT from a minimum value of 0.35 for 1.07",
author = "{The ATLAS collaboration} and G. Aad and B. Abbott and Abbott, {D. C.} and {Abed Abud}, A. and K. Abeling and Abhayasinghe, {D. K.} and Abidi, {S. H.} and A. Aboulhorma and H. Abramowicz and H. Abreu and Y. Abulaiti and {Abusleme Hoffman}, {A. C.} and Acharya, {B. S.} and B. Achkar and L. Adam and {Adam Bourdarios}, C. and L. Adamczyk and L. Adamek and Addepalli, {S. V.} and J. Adelman and A. Adiguzel and S. Adorni and T. Adye and Affolder, {A. A.} and Y. Afik and Agaras, {M. N.} and J. Agarwala and A. Aggarwal and C. Agheorghiesei and Aguilar-Saavedra, {J. A.} and A. Ahmad and F. Ahmadov and Ahmed, {W. S.} and X. Ai and Anisenkov, {A. V.} and Baldin, {E. M.} and K. Beloborodov and Bobrovnikov, {V. S.} and Buzykaev, {A. R.} and Kazanin, {V. F.} and Kharlamov, {A. G.} and T. Kharlamova and Maslennikov, {A. L.} and Maximov, {D. A.} and Peleganchuk, {S. V.} and Rezanova, {O. L.} and Soukharev, {A. M.} and Talyshev, {A. A.} and Tikhonov, {Yu A.} and V. Zhulanov",
note = "Funding Information: We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently. We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; ANID, Chile; CAS, MOST and NSFC, China; Minciencias, Colombia; MEYS CR, Czech Republic; DNRF and DNSRC, Denmark; IN2P3-CNRS and CEA-DRF/IRFU, France; SRNSFG, Georgia; BMBF, HGF and MPG, Germany; GSRI, Greece; RGC and Hong Kong SAR, China; ISF and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; NWO, Netherlands; RCN, Norway; MEiN, Poland; FCT, Portugal; MNE/IFA, Romania; JINR; MES of Russia and NRC KI, Russian Federation; MESTD, Serbia; MSSR, Slovakia; ARRS and MIZ{\v S}, Slovenia; DSI/NRF, South Africa; MICINN, Spain; SRC and Wallenberg Foundation, Sweden; SERI, SNSF and Cantons of Bern and Geneva, Switzerland; MOST, Taiwan; TAEK, Turkey; STFC, United Kingdom; DOE and NSF, U.S. In addition, individual groups and members have received support from BCKDF, CANARIE, Compute Canada and CRC, Canada; COST, ERC, ERDF, Horizon 2020 and Marie Sk{\l}odowska-Curie Actions, European Union; Investissements d{\textquoteright}Avenir Labex, Investissements d{\textquoteright}Avenir Idex and ANR, France; DFG and AvH Foundation, Germany; Herakleitos, Thales and Aristeia programs cofinanced by EU-ESF and the Greek NSRF, Greece; BSF-NSF and GIF, Israel; Norwegian Financial Mechanism 2014-2021, Norway; NCN and NAWA, Poland; La Caixa Banking Foundation, CERCA Programme Generalitat de Catalunya and PROMETEO and GenT Programmes Generalitat Valenciana, Spain; G{\"o}ran Gustafssons Stiftelse, Sweden; The Royal Society and Leverhulme Trust, United Kingdom. The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN, the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (U.S.), the Tier-2 facilities worldwide and large non-WLCG resource providers. Major contributors of computing resources are listed in Ref. . Publisher Copyright: {\textcopyright} 2022 CERN. ",
year = "2022",
month = may,
day = "1",
doi = "10.1103/PhysRevD.105.092012",
language = "English",
volume = "105",
journal = "Physical Review D",
issn = "2470-0010",
publisher = "AMER PHYSICAL SOC",
number = "9",

}

RIS

TY - JOUR

T1 - Search for single production of a vectorlike T quark decaying into a Higgs boson and top quark with fully hadronic final states using the ATLAS detector

AU - The ATLAS collaboration

AU - Aad, G.

AU - Abbott, B.

AU - Abbott, D. C.

AU - Abed Abud, A.

AU - Abeling, K.

AU - Abhayasinghe, D. K.

AU - Abidi, S. H.

AU - Aboulhorma, A.

AU - Abramowicz, H.

AU - Abreu, H.

AU - Abulaiti, Y.

AU - Abusleme Hoffman, A. C.

AU - Acharya, B. S.

AU - Achkar, B.

AU - Adam, L.

AU - Adam Bourdarios, C.

AU - Adamczyk, L.

AU - Adamek, L.

AU - Addepalli, S. V.

AU - Adelman, J.

AU - Adiguzel, A.

AU - Adorni, S.

AU - Adye, T.

AU - Affolder, A. A.

AU - Afik, Y.

AU - Agaras, M. N.

AU - Agarwala, J.

AU - Aggarwal, A.

AU - Agheorghiesei, C.

AU - Aguilar-Saavedra, J. A.

AU - Ahmad, A.

AU - Ahmadov, F.

AU - Ahmed, W. S.

AU - Ai, X.

AU - Anisenkov, A. V.

AU - Baldin, E. M.

AU - Beloborodov, K.

AU - Bobrovnikov, V. S.

AU - Buzykaev, A. R.

AU - Kazanin, V. F.

AU - Kharlamov, A. G.

AU - Kharlamova, T.

AU - Maslennikov, A. L.

AU - Maximov, D. A.

AU - Peleganchuk, S. V.

AU - Rezanova, O. L.

AU - Soukharev, A. M.

AU - Talyshev, A. A.

AU - Tikhonov, Yu A.

AU - Zhulanov, V.

N1 - Funding Information: We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently. We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; ANID, Chile; CAS, MOST and NSFC, China; Minciencias, Colombia; MEYS CR, Czech Republic; DNRF and DNSRC, Denmark; IN2P3-CNRS and CEA-DRF/IRFU, France; SRNSFG, Georgia; BMBF, HGF and MPG, Germany; GSRI, Greece; RGC and Hong Kong SAR, China; ISF and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; NWO, Netherlands; RCN, Norway; MEiN, Poland; FCT, Portugal; MNE/IFA, Romania; JINR; MES of Russia and NRC KI, Russian Federation; MESTD, Serbia; MSSR, Slovakia; ARRS and MIZŠ, Slovenia; DSI/NRF, South Africa; MICINN, Spain; SRC and Wallenberg Foundation, Sweden; SERI, SNSF and Cantons of Bern and Geneva, Switzerland; MOST, Taiwan; TAEK, Turkey; STFC, United Kingdom; DOE and NSF, U.S. In addition, individual groups and members have received support from BCKDF, CANARIE, Compute Canada and CRC, Canada; COST, ERC, ERDF, Horizon 2020 and Marie Skłodowska-Curie Actions, European Union; Investissements d’Avenir Labex, Investissements d’Avenir Idex and ANR, France; DFG and AvH Foundation, Germany; Herakleitos, Thales and Aristeia programs cofinanced by EU-ESF and the Greek NSRF, Greece; BSF-NSF and GIF, Israel; Norwegian Financial Mechanism 2014-2021, Norway; NCN and NAWA, Poland; La Caixa Banking Foundation, CERCA Programme Generalitat de Catalunya and PROMETEO and GenT Programmes Generalitat Valenciana, Spain; Göran Gustafssons Stiftelse, Sweden; The Royal Society and Leverhulme Trust, United Kingdom. The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN, the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (U.S.), the Tier-2 facilities worldwide and large non-WLCG resource providers. Major contributors of computing resources are listed in Ref. . Publisher Copyright: © 2022 CERN.

PY - 2022/5/1

Y1 - 2022/5/1

N2 - A search is made for a vectorlike T quark decaying into a Higgs boson and a top quark in 13 TeV proton-proton collisions using the ATLAS detector at the Large Hadron Collider with a data sample corresponding to an integrated luminosity of 139 fb-1. The Higgs-boson and top-quark candidates are identified in the all-hadronic decay mode, where H→bb¯ and t→bW→bqq¯′ are reconstructed as large-radius jets. The candidate Higgs boson, top quark, and associated B hadrons are identified using tagging algorithms. No significant excess is observed above the background, so limits are set on the production cross section of a singlet T quark at 95% confidence level, depending on the mass mT and coupling κT of the vectorlike T quark to Standard Model particles. In the considered mass range between 1.0 and 2.3 TeV, the upper limit on the allowed coupling values increases with mT from a minimum value of 0.35 for 1.07

AB - A search is made for a vectorlike T quark decaying into a Higgs boson and a top quark in 13 TeV proton-proton collisions using the ATLAS detector at the Large Hadron Collider with a data sample corresponding to an integrated luminosity of 139 fb-1. The Higgs-boson and top-quark candidates are identified in the all-hadronic decay mode, where H→bb¯ and t→bW→bqq¯′ are reconstructed as large-radius jets. The candidate Higgs boson, top quark, and associated B hadrons are identified using tagging algorithms. No significant excess is observed above the background, so limits are set on the production cross section of a singlet T quark at 95% confidence level, depending on the mass mT and coupling κT of the vectorlike T quark to Standard Model particles. In the considered mass range between 1.0 and 2.3 TeV, the upper limit on the allowed coupling values increases with mT from a minimum value of 0.35 for 1.07

UR - http://www.scopus.com/inward/record.url?scp=85131670293&partnerID=8YFLogxK

U2 - 10.1103/PhysRevD.105.092012

DO - 10.1103/PhysRevD.105.092012

M3 - Article

AN - SCOPUS:85131670293

VL - 105

JO - Physical Review D

JF - Physical Review D

SN - 2470-0010

IS - 9

M1 - 092012

ER -

ID: 36561880