Standard

Search for resonances decaying into a weak vector boson and a Higgs boson in the fully hadronic final state produced in proton-proton collisions at s =13 TeV with the ATLAS detector. / The ATLAS collaboration; Bogdanchikov, A. G.

в: Physical Review D, Том 102, № 11, 112008, 17.12.2020.

Результаты исследований: Научные публикации в периодических изданияхстатьяРецензирование

Harvard

APA

Vancouver

The ATLAS collaboration, Bogdanchikov AG. Search for resonances decaying into a weak vector boson and a Higgs boson in the fully hadronic final state produced in proton-proton collisions at s =13 TeV with the ATLAS detector. Physical Review D. 2020 дек. 17;102(11):112008. doi: 10.1103/PhysRevD.102.112008

Author

BibTeX

@article{1fb314b23cdf47149e42d4d6de591a01,
title = "Search for resonances decaying into a weak vector boson and a Higgs boson in the fully hadronic final state produced in proton-proton collisions at s =13 TeV with the ATLAS detector",
abstract = "A search for heavy resonances decaying into a W or Z boson and a Higgs boson produced in proton-proton collisions at the Large Hadron Collider at s=13 TeV is presented. The analysis utilizes the dominant W→qq¯′ or Z→qq¯ and H→bb¯ decays with substructure techniques applied to large-radius jets. A sample corresponding to an integrated luminosity of 139 fb-1 collected with the ATLAS detector is analyzed and no significant excess of data is observed over the background prediction. The results are interpreted in the context of the heavy vector triplet model with spin-1 W′ and Z′ bosons. Upper limits on the cross section are set for resonances with mass between 1.5 and 5.0 TeV, ranging from 6.8 to 0.53 fb for W′→WH and from 8.7 to 0.53 fb for Z′→ZH at the 95% confidence level.",
keywords = "PAIR PRODUCTION, PP COLLISIONS",
author = "{The ATLAS collaboration} and G. Aad and B. Abbott and Abbott, {D. C.} and {Abed Abud}, A. and K. Abeling and Abhayasinghe, {D. K.} and Abidi, {S. H.} and Abouzeid, {O. S.} and Abraham, {N. L.} and H. Abramowicz and H. Abreu and Y. Abulaiti and Acharya, {B. S.} and B. Achkar and L. Adam and {Adam Bourdarios}, C. and L. Adamczyk and L. Adamek and J. Adelman and M. Adersberger and A. Adiguzel and S. Adorni and T. Adye and Affolder, {A. A.} and Y. Afik and C. Agapopoulou and Agaras, {M. N.} and A. Aggarwal and C. Agheorghiesei and Aguilar-Saavedra, {J. A.} and A. Ahmad and F. Ahmadov and Ahmed, {W. S.} and Anisenkov, {A. V.} and Baldin, {E. M.} and K. Beloborodov and Bobrovnikov, {V. S.} and Buzykaev, {A. R.} and Kazanin, {V. F.} and Kharlamov, {A. G.} and T. Kharlamova and Maslennikov, {A. L.} and Maximov, {D. A.} and Peleganchuk, {S. V.} and P. Podberezko and Rezanova, {O. L.} and Soukharev, {A. M.} and Talyshev, {A. A.} and Tikhonov, {Yu A.} and V. Zhulanov and Bogdanchikov, {A. G.}",
note = "Funding Information: We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently. We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC, and CFI, Canada; CERN; ANID, Chile; CAS, MOST, and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR, and VSC CR, Czech Republic; DNRF and DNSRC, Denmark; IN2P3-CNRS and CEA-DRF/IRFU, France; SRNSFG, Georgia; BMBF, HGF, and MPG, Germany; GSRT, Greece; RGC and Hong Kong SAR, China; ISF and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; NWO, Netherlands; RCN, Norway; MNiSW and NCN, Poland; FCT, Portugal; MNE/IFA, Romania; MES of Russia and NRC KI, Russia Federation; JINR; MESTD, Serbia; MSSR, Slovakia; ARRS and MIZ{\v S}, Slovenia; DST/NRF, South Africa; MICINN, Spain; SRC and Wallenberg Foundation, Sweden; SERI, SNSF and Cantons of Bern and Geneva, Switzerland; MOST, Taiwan; TAEK, Turkey; STFC, United Kingdom; DOE and NSF, United States of America. In addition, individual groups and members have received support from BCKDF, CANARIE, Compute Canada and CRC, Canada; ERC, ERDF, Horizon 2020, Marie Sk{\l}odowska-Curie Actions and COST, European Union; Investissements d{\textquoteright}Avenir Labex, Investissements d{\textquoteright}Avenir Idex and ANR, France; DFG and AvH Foundation, Germany; Herakleitos, Thales, and Aristeia programmes cofinanced by EU-ESF and the Greek NSRF, Greece; BSF-NSF and GIF, Israel; La Caixa Banking Foundation, CERCA Programme Generalitat de Catalunya and PROMETEO and GenT Programmes Generalitat Valenciana, Spain; G{\"o}ran Gustafssons Stiftelse, Sweden; The Royal Society and Leverhulme Trust, United Kingdom. The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN, the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK), and BNL (USA), the Tier-2 facilities worldwide and large non-WLCG resource providers. Major contributors of computing resources are listed in Ref. . Publisher Copyright: {\textcopyright} 2020 CERN. Copyright: Copyright 2020 Elsevier B.V., All rights reserved.",
year = "2020",
month = dec,
day = "17",
doi = "10.1103/PhysRevD.102.112008",
language = "English",
volume = "102",
journal = "Physical Review D",
issn = "2470-0010",
publisher = "AMER PHYSICAL SOC",
number = "11",

}

RIS

TY - JOUR

T1 - Search for resonances decaying into a weak vector boson and a Higgs boson in the fully hadronic final state produced in proton-proton collisions at s =13 TeV with the ATLAS detector

AU - The ATLAS collaboration

AU - Aad, G.

AU - Abbott, B.

AU - Abbott, D. C.

AU - Abed Abud, A.

AU - Abeling, K.

AU - Abhayasinghe, D. K.

AU - Abidi, S. H.

AU - Abouzeid, O. S.

AU - Abraham, N. L.

AU - Abramowicz, H.

AU - Abreu, H.

AU - Abulaiti, Y.

AU - Acharya, B. S.

AU - Achkar, B.

AU - Adam, L.

AU - Adam Bourdarios, C.

AU - Adamczyk, L.

AU - Adamek, L.

AU - Adelman, J.

AU - Adersberger, M.

AU - Adiguzel, A.

AU - Adorni, S.

AU - Adye, T.

AU - Affolder, A. A.

AU - Afik, Y.

AU - Agapopoulou, C.

AU - Agaras, M. N.

AU - Aggarwal, A.

AU - Agheorghiesei, C.

AU - Aguilar-Saavedra, J. A.

AU - Ahmad, A.

AU - Ahmadov, F.

AU - Ahmed, W. S.

AU - Anisenkov, A. V.

AU - Baldin, E. M.

AU - Beloborodov, K.

AU - Bobrovnikov, V. S.

AU - Buzykaev, A. R.

AU - Kazanin, V. F.

AU - Kharlamov, A. G.

AU - Kharlamova, T.

AU - Maslennikov, A. L.

AU - Maximov, D. A.

AU - Peleganchuk, S. V.

AU - Podberezko, P.

AU - Rezanova, O. L.

AU - Soukharev, A. M.

AU - Talyshev, A. A.

AU - Tikhonov, Yu A.

AU - Zhulanov, V.

AU - Bogdanchikov, A. G.

N1 - Funding Information: We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently. We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC, and CFI, Canada; CERN; ANID, Chile; CAS, MOST, and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR, and VSC CR, Czech Republic; DNRF and DNSRC, Denmark; IN2P3-CNRS and CEA-DRF/IRFU, France; SRNSFG, Georgia; BMBF, HGF, and MPG, Germany; GSRT, Greece; RGC and Hong Kong SAR, China; ISF and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; NWO, Netherlands; RCN, Norway; MNiSW and NCN, Poland; FCT, Portugal; MNE/IFA, Romania; MES of Russia and NRC KI, Russia Federation; JINR; MESTD, Serbia; MSSR, Slovakia; ARRS and MIZŠ, Slovenia; DST/NRF, South Africa; MICINN, Spain; SRC and Wallenberg Foundation, Sweden; SERI, SNSF and Cantons of Bern and Geneva, Switzerland; MOST, Taiwan; TAEK, Turkey; STFC, United Kingdom; DOE and NSF, United States of America. In addition, individual groups and members have received support from BCKDF, CANARIE, Compute Canada and CRC, Canada; ERC, ERDF, Horizon 2020, Marie Skłodowska-Curie Actions and COST, European Union; Investissements d’Avenir Labex, Investissements d’Avenir Idex and ANR, France; DFG and AvH Foundation, Germany; Herakleitos, Thales, and Aristeia programmes cofinanced by EU-ESF and the Greek NSRF, Greece; BSF-NSF and GIF, Israel; La Caixa Banking Foundation, CERCA Programme Generalitat de Catalunya and PROMETEO and GenT Programmes Generalitat Valenciana, Spain; Göran Gustafssons Stiftelse, Sweden; The Royal Society and Leverhulme Trust, United Kingdom. The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN, the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK), and BNL (USA), the Tier-2 facilities worldwide and large non-WLCG resource providers. Major contributors of computing resources are listed in Ref. . Publisher Copyright: © 2020 CERN. Copyright: Copyright 2020 Elsevier B.V., All rights reserved.

PY - 2020/12/17

Y1 - 2020/12/17

N2 - A search for heavy resonances decaying into a W or Z boson and a Higgs boson produced in proton-proton collisions at the Large Hadron Collider at s=13 TeV is presented. The analysis utilizes the dominant W→qq¯′ or Z→qq¯ and H→bb¯ decays with substructure techniques applied to large-radius jets. A sample corresponding to an integrated luminosity of 139 fb-1 collected with the ATLAS detector is analyzed and no significant excess of data is observed over the background prediction. The results are interpreted in the context of the heavy vector triplet model with spin-1 W′ and Z′ bosons. Upper limits on the cross section are set for resonances with mass between 1.5 and 5.0 TeV, ranging from 6.8 to 0.53 fb for W′→WH and from 8.7 to 0.53 fb for Z′→ZH at the 95% confidence level.

AB - A search for heavy resonances decaying into a W or Z boson and a Higgs boson produced in proton-proton collisions at the Large Hadron Collider at s=13 TeV is presented. The analysis utilizes the dominant W→qq¯′ or Z→qq¯ and H→bb¯ decays with substructure techniques applied to large-radius jets. A sample corresponding to an integrated luminosity of 139 fb-1 collected with the ATLAS detector is analyzed and no significant excess of data is observed over the background prediction. The results are interpreted in the context of the heavy vector triplet model with spin-1 W′ and Z′ bosons. Upper limits on the cross section are set for resonances with mass between 1.5 and 5.0 TeV, ranging from 6.8 to 0.53 fb for W′→WH and from 8.7 to 0.53 fb for Z′→ZH at the 95% confidence level.

KW - PAIR PRODUCTION

KW - PP COLLISIONS

UR - http://www.scopus.com/inward/record.url?scp=85098177648&partnerID=8YFLogxK

U2 - 10.1103/PhysRevD.102.112008

DO - 10.1103/PhysRevD.102.112008

M3 - Article

AN - SCOPUS:85098177648

VL - 102

JO - Physical Review D

JF - Physical Review D

SN - 2470-0010

IS - 11

M1 - 112008

ER -

ID: 27327185