Standard

Search for pair production of vector-like T and B quarks in single-lepton final states using boosted jet substructure in proton-proton collisions at √s=13 TeV. / The CMS collaboration.

в: Journal of High Energy Physics, Том 2017, № 11, 85, 01.11.2017.

Результаты исследований: Научные публикации в периодических изданияхстатьяРецензирование

Harvard

APA

Vancouver

The CMS collaboration. Search for pair production of vector-like T and B quarks in single-lepton final states using boosted jet substructure in proton-proton collisions at √s=13 TeV. Journal of High Energy Physics. 2017 нояб. 1;2017(11):85. doi: 10.1007/JHEP11(2017)085

Author

BibTeX

@article{3229e60b64814b9b8c3f2499d75c5e68,
title = "Search for pair production of vector-like T and B quarks in single-lepton final states using boosted jet substructure in proton-proton collisions at √s=13 TeV",
abstract = "A search for pair production of massive vector-like T and B quarks in proton-proton collisions at s=13 TeV is presented. The data set was collected in 2015 by the CMS experiment at the LHC and corresponds to an integrated luminosity of up to 2.6 fb−1. The T and B quarks are assumed to decay through three possible channels into a heavy boson (either a W, Z or Higgs boson) and a third generation quark. This search is performed in final states with one charged lepton and several jets, exploiting techniques to identify W or Higgs bosons decaying hadronically with large transverse momenta. No excess over the predicted standard model background is observed. Upper limits at 95% confidence level on the T quark pair production cross section are set that exclude T quark masses below 860 GeV in the singlet, and below 830 GeV in the doublet branching fraction scenario. For other branching fraction combinations with ℬ(T → tH) + ℬ(T → bW) ≥ 0.4, lower limits on the T quark range from 790 to 940 GeV. Limits are also set on pair production of singlet vector-like B quarks, which can be excluded up to a mass of 730 GeV. The techniques showcased here for understanding highly-boosted final states are important as the sensitivity to new particles is extended to higher masses.",
keywords = "Hadron-Hadron scattering (experiments), Heavy quark production, vector-like quarks, BOSON, TOP, FERMION, MODELS, PLUS PLUS, PP COLLISIONS, CROSS-SECTION, ENERGIES",
author = "{The CMS collaboration} and Sirunyan, {A. M.} and A. Tumasyan and W. Adam and F. Ambrogi and E. Asilar and T. Bergauer and J. Brandstetter and E. Brondolin and M. Dragicevic and J. Er{\"o} and M. Flechl and M. Friedl and R. Fr{\"u}hwirth and Ghete, {V. M.} and J. Grossmann and J. Hrubec and M. Jeitler and A. K{\"o}nig and N. Krammer and I. Kr{\"a}tschmer and D. Liko and T. Madlener and I. Mikulec and E. Pree and D. Rabady and N. Rad and H. Rohringer and J. Schieck and R. Sch{\"o}fbeck and M. Spanring and D. Spitzbart and J. Strauss and W. Waltenberger and J. Wittmann and Wulz, {C. E.} and M. Zarucki and V. Chekhovsky and V. Mossolov and {Suarez Gonzalez}, J. and {De Wolf}, {E. A.} and {Di Croce}, D. and X. Janssen and J. Lauwers and {Van De Klundert}, M. and {Van Haevermaet}, H. and {Van Mechelen}, P. and {Van Remortel}, N. and V. Blinov and Y. Skovpen and D. Shtol",
note = "Publisher Copyright: {\textcopyright} 2017, The Author(s).",
year = "2017",
month = nov,
day = "1",
doi = "10.1007/JHEP11(2017)085",
language = "English",
volume = "2017",
journal = "Journal of High Energy Physics",
issn = "1029-8479",
publisher = "Springer US",
number = "11",

}

RIS

TY - JOUR

T1 - Search for pair production of vector-like T and B quarks in single-lepton final states using boosted jet substructure in proton-proton collisions at √s=13 TeV

AU - The CMS collaboration

AU - Sirunyan, A. M.

AU - Tumasyan, A.

AU - Adam, W.

AU - Ambrogi, F.

AU - Asilar, E.

AU - Bergauer, T.

AU - Brandstetter, J.

AU - Brondolin, E.

AU - Dragicevic, M.

AU - Erö, J.

AU - Flechl, M.

AU - Friedl, M.

AU - Frühwirth, R.

AU - Ghete, V. M.

AU - Grossmann, J.

AU - Hrubec, J.

AU - Jeitler, M.

AU - König, A.

AU - Krammer, N.

AU - Krätschmer, I.

AU - Liko, D.

AU - Madlener, T.

AU - Mikulec, I.

AU - Pree, E.

AU - Rabady, D.

AU - Rad, N.

AU - Rohringer, H.

AU - Schieck, J.

AU - Schöfbeck, R.

AU - Spanring, M.

AU - Spitzbart, D.

AU - Strauss, J.

AU - Waltenberger, W.

AU - Wittmann, J.

AU - Wulz, C. E.

AU - Zarucki, M.

AU - Chekhovsky, V.

AU - Mossolov, V.

AU - Suarez Gonzalez, J.

AU - De Wolf, E. A.

AU - Di Croce, D.

AU - Janssen, X.

AU - Lauwers, J.

AU - Van De Klundert, M.

AU - Van Haevermaet, H.

AU - Van Mechelen, P.

AU - Van Remortel, N.

AU - Blinov, V.

AU - Skovpen, Y.

AU - Shtol, D.

N1 - Publisher Copyright: © 2017, The Author(s).

PY - 2017/11/1

Y1 - 2017/11/1

N2 - A search for pair production of massive vector-like T and B quarks in proton-proton collisions at s=13 TeV is presented. The data set was collected in 2015 by the CMS experiment at the LHC and corresponds to an integrated luminosity of up to 2.6 fb−1. The T and B quarks are assumed to decay through three possible channels into a heavy boson (either a W, Z or Higgs boson) and a third generation quark. This search is performed in final states with one charged lepton and several jets, exploiting techniques to identify W or Higgs bosons decaying hadronically with large transverse momenta. No excess over the predicted standard model background is observed. Upper limits at 95% confidence level on the T quark pair production cross section are set that exclude T quark masses below 860 GeV in the singlet, and below 830 GeV in the doublet branching fraction scenario. For other branching fraction combinations with ℬ(T → tH) + ℬ(T → bW) ≥ 0.4, lower limits on the T quark range from 790 to 940 GeV. Limits are also set on pair production of singlet vector-like B quarks, which can be excluded up to a mass of 730 GeV. The techniques showcased here for understanding highly-boosted final states are important as the sensitivity to new particles is extended to higher masses.

AB - A search for pair production of massive vector-like T and B quarks in proton-proton collisions at s=13 TeV is presented. The data set was collected in 2015 by the CMS experiment at the LHC and corresponds to an integrated luminosity of up to 2.6 fb−1. The T and B quarks are assumed to decay through three possible channels into a heavy boson (either a W, Z or Higgs boson) and a third generation quark. This search is performed in final states with one charged lepton and several jets, exploiting techniques to identify W or Higgs bosons decaying hadronically with large transverse momenta. No excess over the predicted standard model background is observed. Upper limits at 95% confidence level on the T quark pair production cross section are set that exclude T quark masses below 860 GeV in the singlet, and below 830 GeV in the doublet branching fraction scenario. For other branching fraction combinations with ℬ(T → tH) + ℬ(T → bW) ≥ 0.4, lower limits on the T quark range from 790 to 940 GeV. Limits are also set on pair production of singlet vector-like B quarks, which can be excluded up to a mass of 730 GeV. The techniques showcased here for understanding highly-boosted final states are important as the sensitivity to new particles is extended to higher masses.

KW - Hadron-Hadron scattering (experiments)

KW - Heavy quark production

KW - vector-like quarks

KW - BOSON

KW - TOP

KW - FERMION

KW - MODELS

KW - PLUS PLUS

KW - PP COLLISIONS

KW - CROSS-SECTION

KW - ENERGIES

UR - http://www.scopus.com/inward/record.url?scp=85035214868&partnerID=8YFLogxK

U2 - 10.1007/JHEP11(2017)085

DO - 10.1007/JHEP11(2017)085

M3 - Article

AN - SCOPUS:85035214868

VL - 2017

JO - Journal of High Energy Physics

JF - Journal of High Energy Physics

SN - 1029-8479

IS - 11

M1 - 85

ER -

ID: 9955235