Standard

Search for Heavy Resonances Decaying into a Photon and a Hadronically Decaying Higgs Boson in pp Collisions at s =13 TeV with the ATLAS Detector. / The ATLAS collaboration; Bogdanchikov, A. G.

в: Physical Review Letters, Том 125, № 25, 251802, 18.12.2020.

Результаты исследований: Научные публикации в периодических изданияхстатьяРецензирование

Harvard

APA

Vancouver

The ATLAS collaboration, Bogdanchikov AG. Search for Heavy Resonances Decaying into a Photon and a Hadronically Decaying Higgs Boson in pp Collisions at s =13 TeV with the ATLAS Detector. Physical Review Letters. 2020 дек. 18;125(25):251802. doi: 10.1103/PhysRevLett.125.251802

Author

The ATLAS collaboration ; Bogdanchikov, A. G. / Search for Heavy Resonances Decaying into a Photon and a Hadronically Decaying Higgs Boson in pp Collisions at s =13 TeV with the ATLAS Detector. в: Physical Review Letters. 2020 ; Том 125, № 25.

BibTeX

@article{d04134e3bc624827b2aded4e41bcb1fe,
title = "Search for Heavy Resonances Decaying into a Photon and a Hadronically Decaying Higgs Boson in pp Collisions at s =13 TeV with the ATLAS Detector",
abstract = "This Letter presents a search for the production of new heavy resonances decaying into a Higgs boson and a photon using proton-proton collision data at s=13 TeV collected by the ATLAS detector at the LHC. The data correspond to an integrated luminosity of 139 fb-1. The analysis is performed by reconstructing hadronically decaying Higgs boson (H→bb¯) candidates as single large-radius jets. A novel algorithm using information about the jet constituents in the center-of-mass frame of the jet is implemented to identify the two b quarks in the single jet. No significant excess of events is observed above the expected background. Upper limits are set on the production cross-section times branching fraction for narrow spin-1 resonances decaying into a Higgs boson and a photon in the resonance mass range from 0.7 to 4 TeV, cross-section times branching fractions are excluded between 11.6 fb and 0.11 fb at a 95% confidence level.",
author = "{The ATLAS collaboration} and G. Aad and B. Abbott and Abbott, {D. C.} and {Abed Abud}, A. and K. Abeling and Abhayasinghe, {D. K.} and Abidi, {S. H.} and Abouzeid, {O. S.} and Abraham, {N. L.} and H. Abramowicz and H. Abreu and Y. Abulaiti and Acharya, {B. S.} and B. Achkar and L. Adam and {Adam Bourdarios}, C. and L. Adamczyk and L. Adamek and J. Adelman and M. Adersberger and A. Adiguzel and S. Adorni and T. Adye and Affolder, {A. A.} and Y. Afik and C. Agapopoulou and Agaras, {M. N.} and A. Aggarwal and C. Agheorghiesei and Aguilar-Saavedra, {J. A.} and A. Ahmad and F. Ahmadov and Ahmed, {W. S.} and Anisenkov, {A. V.} and Baldin, {E. M.} and K. Beloborodov and Bobrovnikov, {V. S.} and Buzykaev, {A. R.} and Kazanin, {V. F.} and Kharlamov, {A. G.} and T. Kharlamova and Maslennikov, {A. L.} and Maximov, {D. A.} and Peleganchuk, {S. V.} and P. Podberezko and Rezanova, {O. L.} and Soukharev, {A. M.} and Talyshev, {A. A.} and Tikhonov, {Yu A.} and V. Zhulanov and Bogdanchikov, {A. G.}",
note = "Funding Information: We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently. We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; ANID, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF and DNSRC, Denmark; IN2P3-CNRS and CEA-DRF/IRFU, France; SRNSFG, Georgia; BMBF, HGF and MPG, Germany; GSRT, Greece; RGC and Hong Kong SAR, China; ISF and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; NWO, Netherlands; RCN, Norway; MNiSW and NCN, Poland; FCT, Portugal; MNE/IFA, Romania; JINR; MES of Russia and NRC KI, Russian Federation; MESTD, Serbia; MSSR, Slovakia; ARRS and MIZ{\v S}, Slovenia; DST/NRF, South Africa; MICINN, Spain; SRC and Wallenberg Foundation, Sweden; SERI, SNSF and Cantons of Bern and Geneva, Switzerland; MOST, Taiwan; TAEK, Turkey; STFC, United Kingdom; DOE and NSF, USA. In addition, individual groups and members have received support from BCKDF, CANARIE, Compute Canada, CRC and IVADO, Canada; Beijing Municipal Science & Technology Commission, China; COST, ERC, ERDF, Horizon 2020 and Marie Sk{\l}odowska-Curie Actions, European Union; Investissements d{\textquoteright}Avenir Labex, Investissements d{\textquoteright}Avenir Idex and ANR, France; DFG and AvH Foundation, Germany; Herakleitos, Thales and Aristeia programmes co-financed by EU-ESF and the Greek NSRF, Greece; BSF-NSF and GIF, Israel; La Caixa Banking Foundation, CERCA Programme Generalitat de Catalunya and PROMETEO and GenT Programmes Generalitat Valenciana, Spain; G{\"o}ran Gustafssons Stiftelse, Sweden; The Royal Society and Leverhulme Trust, United Kingdom. The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN, the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA), the Tier-2 facilities worldwide and large non-WLCG resource providers. Major contributors of computing resources are listed in Ref. . Publisher Copyright: {\textcopyright} 2020 CERN. Copyright: Copyright 2020 Elsevier B.V., All rights reserved.",
year = "2020",
month = dec,
day = "18",
doi = "10.1103/PhysRevLett.125.251802",
language = "English",
volume = "125",
journal = "Physical Review Letters",
issn = "0031-9007",
publisher = "American Physical Society",
number = "25",

}

RIS

TY - JOUR

T1 - Search for Heavy Resonances Decaying into a Photon and a Hadronically Decaying Higgs Boson in pp Collisions at s =13 TeV with the ATLAS Detector

AU - The ATLAS collaboration

AU - Aad, G.

AU - Abbott, B.

AU - Abbott, D. C.

AU - Abed Abud, A.

AU - Abeling, K.

AU - Abhayasinghe, D. K.

AU - Abidi, S. H.

AU - Abouzeid, O. S.

AU - Abraham, N. L.

AU - Abramowicz, H.

AU - Abreu, H.

AU - Abulaiti, Y.

AU - Acharya, B. S.

AU - Achkar, B.

AU - Adam, L.

AU - Adam Bourdarios, C.

AU - Adamczyk, L.

AU - Adamek, L.

AU - Adelman, J.

AU - Adersberger, M.

AU - Adiguzel, A.

AU - Adorni, S.

AU - Adye, T.

AU - Affolder, A. A.

AU - Afik, Y.

AU - Agapopoulou, C.

AU - Agaras, M. N.

AU - Aggarwal, A.

AU - Agheorghiesei, C.

AU - Aguilar-Saavedra, J. A.

AU - Ahmad, A.

AU - Ahmadov, F.

AU - Ahmed, W. S.

AU - Anisenkov, A. V.

AU - Baldin, E. M.

AU - Beloborodov, K.

AU - Bobrovnikov, V. S.

AU - Buzykaev, A. R.

AU - Kazanin, V. F.

AU - Kharlamov, A. G.

AU - Kharlamova, T.

AU - Maslennikov, A. L.

AU - Maximov, D. A.

AU - Peleganchuk, S. V.

AU - Podberezko, P.

AU - Rezanova, O. L.

AU - Soukharev, A. M.

AU - Talyshev, A. A.

AU - Tikhonov, Yu A.

AU - Zhulanov, V.

AU - Bogdanchikov, A. G.

N1 - Funding Information: We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently. We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; ANID, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF and DNSRC, Denmark; IN2P3-CNRS and CEA-DRF/IRFU, France; SRNSFG, Georgia; BMBF, HGF and MPG, Germany; GSRT, Greece; RGC and Hong Kong SAR, China; ISF and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; NWO, Netherlands; RCN, Norway; MNiSW and NCN, Poland; FCT, Portugal; MNE/IFA, Romania; JINR; MES of Russia and NRC KI, Russian Federation; MESTD, Serbia; MSSR, Slovakia; ARRS and MIZŠ, Slovenia; DST/NRF, South Africa; MICINN, Spain; SRC and Wallenberg Foundation, Sweden; SERI, SNSF and Cantons of Bern and Geneva, Switzerland; MOST, Taiwan; TAEK, Turkey; STFC, United Kingdom; DOE and NSF, USA. In addition, individual groups and members have received support from BCKDF, CANARIE, Compute Canada, CRC and IVADO, Canada; Beijing Municipal Science & Technology Commission, China; COST, ERC, ERDF, Horizon 2020 and Marie Skłodowska-Curie Actions, European Union; Investissements d’Avenir Labex, Investissements d’Avenir Idex and ANR, France; DFG and AvH Foundation, Germany; Herakleitos, Thales and Aristeia programmes co-financed by EU-ESF and the Greek NSRF, Greece; BSF-NSF and GIF, Israel; La Caixa Banking Foundation, CERCA Programme Generalitat de Catalunya and PROMETEO and GenT Programmes Generalitat Valenciana, Spain; Göran Gustafssons Stiftelse, Sweden; The Royal Society and Leverhulme Trust, United Kingdom. The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN, the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA), the Tier-2 facilities worldwide and large non-WLCG resource providers. Major contributors of computing resources are listed in Ref. . Publisher Copyright: © 2020 CERN. Copyright: Copyright 2020 Elsevier B.V., All rights reserved.

PY - 2020/12/18

Y1 - 2020/12/18

N2 - This Letter presents a search for the production of new heavy resonances decaying into a Higgs boson and a photon using proton-proton collision data at s=13 TeV collected by the ATLAS detector at the LHC. The data correspond to an integrated luminosity of 139 fb-1. The analysis is performed by reconstructing hadronically decaying Higgs boson (H→bb¯) candidates as single large-radius jets. A novel algorithm using information about the jet constituents in the center-of-mass frame of the jet is implemented to identify the two b quarks in the single jet. No significant excess of events is observed above the expected background. Upper limits are set on the production cross-section times branching fraction for narrow spin-1 resonances decaying into a Higgs boson and a photon in the resonance mass range from 0.7 to 4 TeV, cross-section times branching fractions are excluded between 11.6 fb and 0.11 fb at a 95% confidence level.

AB - This Letter presents a search for the production of new heavy resonances decaying into a Higgs boson and a photon using proton-proton collision data at s=13 TeV collected by the ATLAS detector at the LHC. The data correspond to an integrated luminosity of 139 fb-1. The analysis is performed by reconstructing hadronically decaying Higgs boson (H→bb¯) candidates as single large-radius jets. A novel algorithm using information about the jet constituents in the center-of-mass frame of the jet is implemented to identify the two b quarks in the single jet. No significant excess of events is observed above the expected background. Upper limits are set on the production cross-section times branching fraction for narrow spin-1 resonances decaying into a Higgs boson and a photon in the resonance mass range from 0.7 to 4 TeV, cross-section times branching fractions are excluded between 11.6 fb and 0.11 fb at a 95% confidence level.

UR - http://www.scopus.com/inward/record.url?scp=85098151353&partnerID=8YFLogxK

U2 - 10.1103/PhysRevLett.125.251802

DO - 10.1103/PhysRevLett.125.251802

M3 - Article

C2 - 33416363

AN - SCOPUS:85098151353

VL - 125

JO - Physical Review Letters

JF - Physical Review Letters

SN - 0031-9007

IS - 25

M1 - 251802

ER -

ID: 27326962