Standard

Search for a heavy Higgs boson decaying into a Z boson and another heavy Higgs boson in the ℓℓbb and ℓℓWW final states in pp collisions at √s=13 TeV with the ATLAS detector. / The ATLAS collaboration; Bogdanchikov, A. G.

в: European Physical Journal C, Том 81, № 5, 396, 05.2021.

Результаты исследований: Научные публикации в периодических изданияхстатьяРецензирование

Harvard

APA

Vancouver

The ATLAS collaboration, Bogdanchikov AG. Search for a heavy Higgs boson decaying into a Z boson and another heavy Higgs boson in the ℓℓbb and ℓℓWW final states in pp collisions at √s=13 TeV with the ATLAS detector. European Physical Journal C. 2021 май;81(5):396. doi: 10.1140/epjc/s10052-021-09117-5

Author

BibTeX

@article{0ab03cc4341f42a691ffa3725a020c4e,
title = "Search for a heavy Higgs boson decaying into a Z boson and another heavy Higgs boson in the ℓℓbb and ℓℓWW final states in pp collisions at √s=13 TeV with the ATLAS detector",
abstract = "A search for a heavy neutral Higgs boson, A, decaying into a Z boson and another heavy Higgs boson, H, is performed using a data sample corresponding to an integrated luminosity of 139 fb- 1 from proton–proton collisions at s=13 TeV recorded by the ATLAS detector at the LHC. The search considers the Z boson decaying into electrons or muons and the H boson into a pair of b-quarks or W bosons. The mass range considered is 230–800 GeV for the A boson and 130–700 GeV for the H boson. The data are in good agreement with the background predicted by the Standard Model, and therefore 95% confidence-level upper limits for σ×B(A→ZH)×B(H→bborH→WW) are set. The upper limits are in the range 0.0062–0.380 pb for the H→ bb channel and in the range 0.023–8.9 pb for the H→ WW channel. An interpretation of the results in the context of two-Higgs-doublet models is also given.",
author = "{The ATLAS collaboration} and G. Aad and B. Abbott and Abbott, {D. C.} and {Abed Abud}, A. and K. Abeling and Abhayasinghe, {D. K.} and Abidi, {S. H.} and AbouZeid, {O. S.} and Abraham, {N. L.} and H. Abramowicz and H. Abreu and Y. Abulaiti and Acharya, {B. S.} and B. Achkar and L. Adam and {Adam Bourdarios}, C. and L. Adamczyk and L. Adamek and J. Adelman and A. Adiguzel and S. Adorni and T. Adye and Affolder, {A. A.} and Y. Afik and C. Agapopoulou and Agaras, {M. N.} and A. Aggarwal and C. Agheorghiesei and Aguilar-Saavedra, {J. A.} and A. Ahmad and F. Ahmadov and Ahmed, {W. S.} and X. Ai and Anisenkov, {A. V.} and Baldin, {E. M.} and K. Beloborodov and Bobrovnikov, {V. S.} and Bogdanchikov, {A. G.} and Buzykaev, {A. R.} and Kazanin, {V. F.} and Kharlamov, {A. G.} and T. Kharlamova and Maslennikov, {A. L.} and Maximov, {D. A.} and Peleganchuk, {S. V.} and P. Podberezko and Rezanova, {O. L.} and Soukharev, {A. M.} and Talyshev, {A. A.} and Tikhonov, {Yu A.} and V. Zhulanov",
note = "Funding Information: We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently. We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; ANID, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF and DNSRC, Denmark; IN2P3-CNRS and CEA-DRF/IRFU, France; SRNSFG, Georgia; BMBF, HGF and MPG, Germany; GSRT, Greece; RGC and Hong Kong SAR, China; ISF and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; NWO, Netherlands; RCN, Norway; MNiSW and NCN, Poland; FCT, Portugal; MNE/IFA, Romania; JINR; MES of Russia and NRC KI, Russian Federation; MESTD, Serbia; MSSR, Slovakia; ARRS and MIZ{\v S}, Slovenia; DST/NRF, South Africa; MICINN, Spain; SRC and Wallenberg Foundation, Sweden; SERI, SNSF and Cantons of Bern and Geneva, Switzerland; MOST, Taiwan; TAEK, Turkey; STFC, United Kingdom; DOE and NSF, United States of America. In addition, individual groups and members have received support from BCKDF, CANARIE, Compute Canada, CRC and IVADO, Canada; Beijing Municipal Science & Technology Commission, China; COST, ERC, ERDF, Horizon 2020 and Marie Sk{\l}odowska-Curie Actions, European Union; Investissements d{\textquoteright}Avenir Labex, Investissements d{\textquoteright}Avenir Idex and ANR, France; DFG and AvH Foundation, Germany; Herakleitos, Thales and Aristeia programmes co-financed by EU-ESF and the Greek NSRF, Greece; BSF-NSF and GIF, Israel; La Caixa Banking Foundation, CERCA Programme Generalitat de Catalunya and PROMETEO and GenT Programmes Generalitat Valenciana, Spain; G{\"o}ran Gustafssons Stiftelse, Sweden; The Royal Society and Leverhulme Trust, United Kingdom. The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN, the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA), the Tier-2 facilities worldwide and large non-WLCG resource providers. Major contributors of computing resources are listed in Ref. []. Publisher Copyright: {\textcopyright} 2021, The Author(s). Copyright: Copyright 2021 Elsevier B.V., All rights reserved.",
year = "2021",
month = may,
doi = "10.1140/epjc/s10052-021-09117-5",
language = "English",
volume = "81",
journal = "European Physical Journal C",
issn = "1434-6044",
publisher = "Springer Nature",
number = "5",

}

RIS

TY - JOUR

T1 - Search for a heavy Higgs boson decaying into a Z boson and another heavy Higgs boson in the ℓℓbb and ℓℓWW final states in pp collisions at √s=13 TeV with the ATLAS detector

AU - The ATLAS collaboration

AU - Aad, G.

AU - Abbott, B.

AU - Abbott, D. C.

AU - Abed Abud, A.

AU - Abeling, K.

AU - Abhayasinghe, D. K.

AU - Abidi, S. H.

AU - AbouZeid, O. S.

AU - Abraham, N. L.

AU - Abramowicz, H.

AU - Abreu, H.

AU - Abulaiti, Y.

AU - Acharya, B. S.

AU - Achkar, B.

AU - Adam, L.

AU - Adam Bourdarios, C.

AU - Adamczyk, L.

AU - Adamek, L.

AU - Adelman, J.

AU - Adiguzel, A.

AU - Adorni, S.

AU - Adye, T.

AU - Affolder, A. A.

AU - Afik, Y.

AU - Agapopoulou, C.

AU - Agaras, M. N.

AU - Aggarwal, A.

AU - Agheorghiesei, C.

AU - Aguilar-Saavedra, J. A.

AU - Ahmad, A.

AU - Ahmadov, F.

AU - Ahmed, W. S.

AU - Ai, X.

AU - Anisenkov, A. V.

AU - Baldin, E. M.

AU - Beloborodov, K.

AU - Bobrovnikov, V. S.

AU - Bogdanchikov, A. G.

AU - Buzykaev, A. R.

AU - Kazanin, V. F.

AU - Kharlamov, A. G.

AU - Kharlamova, T.

AU - Maslennikov, A. L.

AU - Maximov, D. A.

AU - Peleganchuk, S. V.

AU - Podberezko, P.

AU - Rezanova, O. L.

AU - Soukharev, A. M.

AU - Talyshev, A. A.

AU - Tikhonov, Yu A.

AU - Zhulanov, V.

N1 - Funding Information: We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently. We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; ANID, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF and DNSRC, Denmark; IN2P3-CNRS and CEA-DRF/IRFU, France; SRNSFG, Georgia; BMBF, HGF and MPG, Germany; GSRT, Greece; RGC and Hong Kong SAR, China; ISF and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; NWO, Netherlands; RCN, Norway; MNiSW and NCN, Poland; FCT, Portugal; MNE/IFA, Romania; JINR; MES of Russia and NRC KI, Russian Federation; MESTD, Serbia; MSSR, Slovakia; ARRS and MIZŠ, Slovenia; DST/NRF, South Africa; MICINN, Spain; SRC and Wallenberg Foundation, Sweden; SERI, SNSF and Cantons of Bern and Geneva, Switzerland; MOST, Taiwan; TAEK, Turkey; STFC, United Kingdom; DOE and NSF, United States of America. In addition, individual groups and members have received support from BCKDF, CANARIE, Compute Canada, CRC and IVADO, Canada; Beijing Municipal Science & Technology Commission, China; COST, ERC, ERDF, Horizon 2020 and Marie Skłodowska-Curie Actions, European Union; Investissements d’Avenir Labex, Investissements d’Avenir Idex and ANR, France; DFG and AvH Foundation, Germany; Herakleitos, Thales and Aristeia programmes co-financed by EU-ESF and the Greek NSRF, Greece; BSF-NSF and GIF, Israel; La Caixa Banking Foundation, CERCA Programme Generalitat de Catalunya and PROMETEO and GenT Programmes Generalitat Valenciana, Spain; Göran Gustafssons Stiftelse, Sweden; The Royal Society and Leverhulme Trust, United Kingdom. The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN, the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA), the Tier-2 facilities worldwide and large non-WLCG resource providers. Major contributors of computing resources are listed in Ref. []. Publisher Copyright: © 2021, The Author(s). Copyright: Copyright 2021 Elsevier B.V., All rights reserved.

PY - 2021/5

Y1 - 2021/5

N2 - A search for a heavy neutral Higgs boson, A, decaying into a Z boson and another heavy Higgs boson, H, is performed using a data sample corresponding to an integrated luminosity of 139 fb- 1 from proton–proton collisions at s=13 TeV recorded by the ATLAS detector at the LHC. The search considers the Z boson decaying into electrons or muons and the H boson into a pair of b-quarks or W bosons. The mass range considered is 230–800 GeV for the A boson and 130–700 GeV for the H boson. The data are in good agreement with the background predicted by the Standard Model, and therefore 95% confidence-level upper limits for σ×B(A→ZH)×B(H→bborH→WW) are set. The upper limits are in the range 0.0062–0.380 pb for the H→ bb channel and in the range 0.023–8.9 pb for the H→ WW channel. An interpretation of the results in the context of two-Higgs-doublet models is also given.

AB - A search for a heavy neutral Higgs boson, A, decaying into a Z boson and another heavy Higgs boson, H, is performed using a data sample corresponding to an integrated luminosity of 139 fb- 1 from proton–proton collisions at s=13 TeV recorded by the ATLAS detector at the LHC. The search considers the Z boson decaying into electrons or muons and the H boson into a pair of b-quarks or W bosons. The mass range considered is 230–800 GeV for the A boson and 130–700 GeV for the H boson. The data are in good agreement with the background predicted by the Standard Model, and therefore 95% confidence-level upper limits for σ×B(A→ZH)×B(H→bborH→WW) are set. The upper limits are in the range 0.0062–0.380 pb for the H→ bb channel and in the range 0.023–8.9 pb for the H→ WW channel. An interpretation of the results in the context of two-Higgs-doublet models is also given.

UR - http://www.scopus.com/inward/record.url?scp=85105811017&partnerID=8YFLogxK

U2 - 10.1140/epjc/s10052-021-09117-5

DO - 10.1140/epjc/s10052-021-09117-5

M3 - Article

AN - SCOPUS:85105811017

VL - 81

JO - European Physical Journal C

JF - European Physical Journal C

SN - 1434-6044

IS - 5

M1 - 396

ER -

ID: 28550862