Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
Scheme of a hydrogen-molecule quantum simulator based on two ultracold rubidium atoms. / Ashkarin, I. N.; Beterov, I. I.; Tretyakov, D. B. и др.
в: Quantum Electronics, Том 49, № 5, 01.01.2019, стр. 449-454.Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
}
TY - JOUR
T1 - Scheme of a hydrogen-molecule quantum simulator based on two ultracold rubidium atoms
AU - Ashkarin, I. N.
AU - Beterov, I. I.
AU - Tretyakov, D. B.
AU - Entin, V. M.
AU - Yakshina, E. A.
AU - Ryabtsev, I. I.
N1 - Publisher Copyright: © 2019 Kvantovaya Elektronika, Turpion Ltd and IOP Publishing Ltd.
PY - 2019/1/1
Y1 - 2019/1/1
N2 - A scheme is proposed for implementing a hydrogen-molecule quantum simulator based on two ultracold rubidium atoms trapped into spatially separated optical dipole traps. The scheme includes the adiabatic preparation of the initial quantum state of two atoms and the iterative quantum phase estimation. The accuracy of measuring the ground state energy of a molecule is numerically calculated as a function of the number of iterations. The simulation is performed using two-qubit gates based on the dipole blockade effect under short-term excitation of atoms into the Rydberg states with allowance for the finite lifetime of Rydberg states and the finite energies of the van der Waals interaction.
AB - A scheme is proposed for implementing a hydrogen-molecule quantum simulator based on two ultracold rubidium atoms trapped into spatially separated optical dipole traps. The scheme includes the adiabatic preparation of the initial quantum state of two atoms and the iterative quantum phase estimation. The accuracy of measuring the ground state energy of a molecule is numerically calculated as a function of the number of iterations. The simulation is performed using two-qubit gates based on the dipole blockade effect under short-term excitation of atoms into the Rydberg states with allowance for the finite lifetime of Rydberg states and the finite energies of the van der Waals interaction.
KW - hydrogen molecules
KW - quantum simulator
KW - ultracold rubidium atoms
UR - http://www.scopus.com/inward/record.url?scp=85067824155&partnerID=8YFLogxK
U2 - 10.1070/QEL17002
DO - 10.1070/QEL17002
M3 - Article
AN - SCOPUS:85067824155
VL - 49
SP - 449
EP - 454
JO - Quantum Electronics
JF - Quantum Electronics
SN - 1063-7818
IS - 5
ER -
ID: 20709200