Standard

Rota—Baxter operators on Cur(sl2 (C)). / Gubarev, Vsevolod; Kozlov, Roman.

в: International Electronic Journal of Algebra, Том 33, № 33, 09.01.2023, стр. 247-269.

Результаты исследований: Научные публикации в периодических изданияхстатьяРецензирование

Harvard

Gubarev, V & Kozlov, R 2023, 'Rota—Baxter operators on Cur(sl2 (C))', International Electronic Journal of Algebra, Том. 33, № 33, стр. 247-269. https://doi.org/10.24330/ieja.1218727

APA

Gubarev, V., & Kozlov, R. (2023). Rota—Baxter operators on Cur(sl2 (C)). International Electronic Journal of Algebra, 33(33), 247-269. https://doi.org/10.24330/ieja.1218727

Vancouver

Gubarev V, Kozlov R. Rota—Baxter operators on Cur(sl2 (C)). International Electronic Journal of Algebra. 2023 янв. 9;33(33):247-269. doi: 10.24330/ieja.1218727

Author

Gubarev, Vsevolod ; Kozlov, Roman. / Rota—Baxter operators on Cur(sl2 (C)). в: International Electronic Journal of Algebra. 2023 ; Том 33, № 33. стр. 247-269.

BibTeX

@article{1a3764fd701340ee85fee19a0ccf6acc,
title = "Rota—Baxter operators on Cur(sl2 (C))",
abstract = "We classify all Rota—Baxter operators on the simple Lie conformal algebra Cur(sl2 (C)) and clarify which of them arise from the solutions to the conformal classical Yang—Baxter equation due to the connection discov-ered by Y. Hong and C. Bai in 2020.",
keywords = "Lie conformal algebra, Rota—Baxter operator, conformal classical Yang—Baxter equation",
author = "Vsevolod Gubarev and Roman Kozlov",
note = "The authors are supported by the grant of the President of the Russian Federation for Young Scientists (MK-1241.2021.1.1).",
year = "2023",
month = jan,
day = "9",
doi = "10.24330/ieja.1218727",
language = "English",
volume = "33",
pages = "247--269",
journal = "International Electronic Journal of Algebra",
issn = "1306-6048",
publisher = "Hacettepe University",
number = "33",

}

RIS

TY - JOUR

T1 - Rota—Baxter operators on Cur(sl2 (C))

AU - Gubarev, Vsevolod

AU - Kozlov, Roman

N1 - The authors are supported by the grant of the President of the Russian Federation for Young Scientists (MK-1241.2021.1.1).

PY - 2023/1/9

Y1 - 2023/1/9

N2 - We classify all Rota—Baxter operators on the simple Lie conformal algebra Cur(sl2 (C)) and clarify which of them arise from the solutions to the conformal classical Yang—Baxter equation due to the connection discov-ered by Y. Hong and C. Bai in 2020.

AB - We classify all Rota—Baxter operators on the simple Lie conformal algebra Cur(sl2 (C)) and clarify which of them arise from the solutions to the conformal classical Yang—Baxter equation due to the connection discov-ered by Y. Hong and C. Bai in 2020.

KW - Lie conformal algebra

KW - Rota—Baxter operator

KW - conformal classical Yang—Baxter equation

UR - https://www.scopus.com/record/display.uri?eid=2-s2.0-85148575861&origin=inward&txGid=8bccd6dc83cbb2d2766d5889eb2c0c39

UR - https://www.mendeley.com/catalogue/540c0bac-41c0-37e0-9d17-4120e9fde5e3/

U2 - 10.24330/ieja.1218727

DO - 10.24330/ieja.1218727

M3 - Article

VL - 33

SP - 247

EP - 269

JO - International Electronic Journal of Algebra

JF - International Electronic Journal of Algebra

SN - 1306-6048

IS - 33

ER -

ID: 59235621