Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
Rota-Baxter operators of non-scalar weights, connections with coboundary Lie bialgebra structures. / Goncharov, Maxim.
в: Communications in Algebra, 28.01.2025.Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
}
TY - JOUR
T1 - Rota-Baxter operators of non-scalar weights, connections with coboundary Lie bialgebra structures
AU - Goncharov, Maxim
N1 - The research is supported by Russian Science Foundation (project 23-71-10005, https://rscf.ru/project/23-71-10005/).
PY - 2025/1/28
Y1 - 2025/1/28
N2 - In the paper, we introduce the notion of a Rota-Baxter operator of a non-scalar weight. As a motivation, we show that there is a natural connection between Rota-Baxter operators of this type and structures of coboundary Lie bialgebras on a quadratic finite-dimensional Lie algebra. We find necessary and sufficient conditions for a pair (Formula presented.) to be a coboundary (triangular, quasitriangular or factorizable) Lie bialgebra in the case when (Formula presented.) is a finite-dimensional quadratic perfect Lie algebra with trivial center. Moreover, we show that some classical results on Lie bialgebras follow from the corresponding results for Rota-Baxter operators.
AB - In the paper, we introduce the notion of a Rota-Baxter operator of a non-scalar weight. As a motivation, we show that there is a natural connection between Rota-Baxter operators of this type and structures of coboundary Lie bialgebras on a quadratic finite-dimensional Lie algebra. We find necessary and sufficient conditions for a pair (Formula presented.) to be a coboundary (triangular, quasitriangular or factorizable) Lie bialgebra in the case when (Formula presented.) is a finite-dimensional quadratic perfect Lie algebra with trivial center. Moreover, we show that some classical results on Lie bialgebras follow from the corresponding results for Rota-Baxter operators.
KW - Classical Yang-Baxter equation
KW - Lie algebra
KW - Lie bialgebra
KW - Rota—Baxter operator
KW - coboundary Lie bialgebra
UR - https://www.mendeley.com/catalogue/878a9f74-8ed8-3090-9eed-c137c46c3a9a/
UR - https://www.scopus.com/record/display.uri?eid=2-s2.0-85216236474&origin=inward&txGid=8fb4b8944634164780a178051065c0f7
U2 - 10.1080/00927872.2025.2450032
DO - 10.1080/00927872.2025.2450032
M3 - Article
JO - Communications in Algebra
JF - Communications in Algebra
SN - 0092-7872
ER -
ID: 63950076