Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
Rota—Baxter groups, skew left braces, and the Yang—Baxter equation. / Bardakov, Valeriy G.; Gubarev, Vsevolod.
в: Journal of Algebra, Том 596, 15.04.2022, стр. 328-351.Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
}
TY - JOUR
T1 - Rota—Baxter groups, skew left braces, and the Yang—Baxter equation
AU - Bardakov, Valeriy G.
AU - Gubarev, Vsevolod
N1 - Publisher Copyright: © 2022 Elsevier Inc.
PY - 2022/4/15
Y1 - 2022/4/15
N2 - Braces were introduced by W. Rump in 2006 as an algebraic system related to the quantum Yang—Baxter equation. In 2017, L. Guarnieri and L. Vendramin defined for the same purposes a more general notion of a skew left brace. In 2020, L. Guo, H. Lang and Y. Sheng gave a definition of what is a Rota—Baxter operator on a group. We connect these two notions as follows. It is shown that every Rota—Baxter group gives rise to a skew left brace. Moreover, every skew left brace can be injectively embedded into a Rota—Baxter group. When the additive group of a skew left brace is complete, then this brace is induced by a Rota—Baxter group. We interpret some notions of the theory of skew left braces in terms of Rota—Baxter operators.
AB - Braces were introduced by W. Rump in 2006 as an algebraic system related to the quantum Yang—Baxter equation. In 2017, L. Guarnieri and L. Vendramin defined for the same purposes a more general notion of a skew left brace. In 2020, L. Guo, H. Lang and Y. Sheng gave a definition of what is a Rota—Baxter operator on a group. We connect these two notions as follows. It is shown that every Rota—Baxter group gives rise to a skew left brace. Moreover, every skew left brace can be injectively embedded into a Rota—Baxter group. When the additive group of a skew left brace is complete, then this brace is induced by a Rota—Baxter group. We interpret some notions of the theory of skew left braces in terms of Rota—Baxter operators.
KW - Rota—Baxter group
KW - Rota—Baxter operator
KW - Skew left brace
KW - Yang—Baxter equation
UR - http://www.scopus.com/inward/record.url?scp=85123361818&partnerID=8YFLogxK
U2 - 10.1016/j.jalgebra.2021.12.036
DO - 10.1016/j.jalgebra.2021.12.036
M3 - Article
AN - SCOPUS:85123361818
VL - 596
SP - 328
EP - 351
JO - Journal of Algebra
JF - Journal of Algebra
SN - 0021-8693
ER -
ID: 35386203