Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
Roll Wave Structure in Long Tubes with Compliant Walls. / Chesnokov, A. A.; Liapidevskii, V. Yu.
в: Proceedings of the Steklov Institute of Mathematics, Том 300, № 1, 01.01.2018, стр. 196-205.Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
}
TY - JOUR
T1 - Roll Wave Structure in Long Tubes with Compliant Walls
AU - Chesnokov, A. A.
AU - Liapidevskii, V. Yu
N1 - Publisher Copyright: © 2018, Pleiades Publishing, Ltd.
PY - 2018/1/1
Y1 - 2018/1/1
N2 - We consider a flow of a fluid in a long vertical tube with elastic walls and show that, for certain parameters of the flow, small perturbations of the flow at the inlet section of the tube give rise to roll waves. Depending on the properties of the closing relation, either regular or anomalous roll waves are formed. In the latter case, a roll wave is characterized by two strong discontinuities that connect regions of continuous flow. We present the results of numerical simulations of the development of a pulsatile flow mode for convex and nonconvex closing relations that demonstrate the formation of regular and anomalous roll waves. We also construct a two-parameter class of exact periodic solutions and obtain existence diagrams for roll waves.
AB - We consider a flow of a fluid in a long vertical tube with elastic walls and show that, for certain parameters of the flow, small perturbations of the flow at the inlet section of the tube give rise to roll waves. Depending on the properties of the closing relation, either regular or anomalous roll waves are formed. In the latter case, a roll wave is characterized by two strong discontinuities that connect regions of continuous flow. We present the results of numerical simulations of the development of a pulsatile flow mode for convex and nonconvex closing relations that demonstrate the formation of regular and anomalous roll waves. We also construct a two-parameter class of exact periodic solutions and obtain existence diagrams for roll waves.
UR - http://www.scopus.com/inward/record.url?scp=85047520193&partnerID=8YFLogxK
U2 - 10.1134/S0081543818010170
DO - 10.1134/S0081543818010170
M3 - Article
AN - SCOPUS:85047520193
VL - 300
SP - 196
EP - 205
JO - Proceedings of the Steklov Institute of Mathematics
JF - Proceedings of the Steklov Institute of Mathematics
SN - 0081-5438
IS - 1
ER -
ID: 13632554