Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
Rigidity Theorem for Self-Affine Arcs. / Tetenov, A. V.; Chelkanova, O. A.
в: Doklady Mathematics, Том 103, № 2, 03.2021, стр. 81-84.Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
}
TY - JOUR
T1 - Rigidity Theorem for Self-Affine Arcs
AU - Tetenov, A. V.
AU - Chelkanova, O. A.
N1 - Funding Information: This work was supported by the Mathematical Center in Akademgorodok with the Ministry of Science and Higher Education of the Russian Federation, agreement no. 075-15-2019-1613. Publisher Copyright: © 2021, Pleiades Publishing, Ltd.
PY - 2021/3
Y1 - 2021/3
N2 - It has been known for more than a decade that, if a self-similar arc γ can be shifted along itself by similarity maps that are arbitrarily close to identity, then γ is a straight line segment. We extend this statement to the class of self-affine arcs and prove that each self-affine arc admitting affine shifts that may be arbitrarily close to identity is a segment of a parabola or a straight line.
AB - It has been known for more than a decade that, if a self-similar arc γ can be shifted along itself by similarity maps that are arbitrarily close to identity, then γ is a straight line segment. We extend this statement to the class of self-affine arcs and prove that each self-affine arc admitting affine shifts that may be arbitrarily close to identity is a segment of a parabola or a straight line.
KW - attractor
KW - rigidity theorem
KW - self-affine arc
KW - weak separation property
UR - http://www.scopus.com/inward/record.url?scp=85111125614&partnerID=8YFLogxK
U2 - 10.1134/S1064562421020058
DO - 10.1134/S1064562421020058
M3 - Article
AN - SCOPUS:85111125614
VL - 103
SP - 81
EP - 84
JO - Doklady Mathematics
JF - Doklady Mathematics
SN - 1064-5624
IS - 2
ER -
ID: 34174698