Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
Riemannian F-Manifolds, Bi-Flat F-Manifolds, and Flat Pencils of Metrics. / Arsie, Alessandro; Buryak, Alexandr; Lorenzoni, Paolo и др.
в: International mathematics research notices, Том 2022, № 21, 11.2022, стр. 16730–16778.Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
}
TY - JOUR
T1 - Riemannian F-Manifolds, Bi-Flat F-Manifolds, and Flat Pencils of Metrics
AU - Arsie, Alessandro
AU - Buryak, Alexandr
AU - Lorenzoni, Paolo
AU - Rossi, Paolo
N1 - This work was supported by the Mathematical Center in Akademgorodok under agreement No. 075-15-2019-1675 [to A.B.] with the Ministry of Science and Higher Education of the Russian Federation; and the European Commission H2020-MSCA-RISE-2017 [Project No. 778010 IPaDEGAN to P.L.].
PY - 2022/11
Y1 - 2022/11
N2 - In this paper, we study relations between various natural structures on F-manifolds. In particular, given an arbitrary Riemannian F-manifold, we present a construction of a canonical flat F-manifold associated to it. We also describe a construction of a canonical homogeneous Riemannian F-manifold associated to an arbitrary exact homogeneous flat pencil of metrics satisfying a certain non-degeneracy assumption. In the last part of the paper, we construct Legendre transformations for Riemannian F-manifolds.
AB - In this paper, we study relations between various natural structures on F-manifolds. In particular, given an arbitrary Riemannian F-manifold, we present a construction of a canonical flat F-manifold associated to it. We also describe a construction of a canonical homogeneous Riemannian F-manifold associated to an arbitrary exact homogeneous flat pencil of metrics satisfying a certain non-degeneracy assumption. In the last part of the paper, we construct Legendre transformations for Riemannian F-manifolds.
KW - DARBOUX-EGOROV SYSTEM
KW - COUPLED KDV EQUATIONS
KW - DIFFERENTIAL GEOMETRY
KW - INTEGRABLE SYSTEMS
KW - PAINLEVE
KW - INVARIANTS
UR - https://www.scopus.com/record/display.uri?eid=2-s2.0-85158041203&origin=inward&txGid=ca9bd283188ff03291a37eab60657054
UR - https://www.mendeley.com/catalogue/40948295-f687-351e-be9f-3e7baa8aad1c/
U2 - 10.1093/imrn/rnab203
DO - 10.1093/imrn/rnab203
M3 - Article
VL - 2022
SP - 16730
EP - 16778
JO - International mathematics research notices
JF - International mathematics research notices
SN - 1073-7928
IS - 21
ER -
ID: 35561410