Результаты исследований: Публикации в книгах, отчётах, сборниках, трудах конференций › статья в сборнике материалов конференции › научная › Рецензирование
Retinogeniculate Visual Pathway Reconstruction Using Reinforcement Learning. / Zhao, Shuo; He, Jianzhong; Li, Yongqiang и др.
Chinese Control Conference, CCC. Institute of Electrical and Electronics Engineers (IEEE), 2023. стр. 7935-7940.Результаты исследований: Публикации в книгах, отчётах, сборниках, трудах конференций › статья в сборнике материалов конференции › научная › Рецензирование
}
TY - GEN
T1 - Retinogeniculate Visual Pathway Reconstruction Using Reinforcement Learning
AU - Zhao, Shuo
AU - He, Jianzhong
AU - Li, Yongqiang
AU - Zeng, Qingrun
AU - Feng, Yuanjing
AU - Amelina, Evgeniya
AU - Amelin, Mihail
AU - Xu, Yile
N1 - Публикация для корректировки.
PY - 2023
Y1 - 2023
N2 - Reconstructing the retinogeniculate visual pathway with the pituitary tumor compression is a difficult task. The tumor not only compresses the retinogeniculate visual pathway to produce a large angular deviation, but also interferes with the diffusion magnetic resonance image signal. In order to solve the above problems, the anatomical prior knowledge and fiber direction distribution are used in this study. We first manually drawn regions of interest as anatomical priors. The regions of interest are located in the eyeball and optic tract. Then, we purpose a mathematical model that combine the anatomical prior knowledge and fiber direction distribution. The mathematical model is an Markov decision process, which can be solved by reinforcement learning. In the comparison experiments, the purposed method shows high performance on retinogeniculate visual pathway reconstruction. Furthermore, only our method is able to tracking retinogeniculate visual pathway with the pituitary tumor.
AB - Reconstructing the retinogeniculate visual pathway with the pituitary tumor compression is a difficult task. The tumor not only compresses the retinogeniculate visual pathway to produce a large angular deviation, but also interferes with the diffusion magnetic resonance image signal. In order to solve the above problems, the anatomical prior knowledge and fiber direction distribution are used in this study. We first manually drawn regions of interest as anatomical priors. The regions of interest are located in the eyeball and optic tract. Then, we purpose a mathematical model that combine the anatomical prior knowledge and fiber direction distribution. The mathematical model is an Markov decision process, which can be solved by reinforcement learning. In the comparison experiments, the purposed method shows high performance on retinogeniculate visual pathway reconstruction. Furthermore, only our method is able to tracking retinogeniculate visual pathway with the pituitary tumor.
UR - https://www.scopus.com/record/display.uri?eid=2-s2.0-85175535839&origin=inward&txGid=cb512656a31b7096c210512ab708fbb6
UR - https://www.mendeley.com/catalogue/6f4d98f1-5a6f-35ff-975b-6df9ce51a3a8/
U2 - 10.23919/ccc58697.2023.10239952
DO - 10.23919/ccc58697.2023.10239952
M3 - Conference contribution
SN - 9789887581543
SP - 7935
EP - 7940
BT - Chinese Control Conference, CCC
PB - Institute of Electrical and Electronics Engineers (IEEE)
ER -
ID: 59182395