Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
Representations of flat virtual braids which do not preserve the forbidden relations. / Bardakov, V.; Chuzhinov, B.; Emel'yanenkov, I. и др.
в: Journal of Knot Theory and its Ramifications, Том 32, № 14, 2350093, 12.2023.Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
}
TY - JOUR
T1 - Representations of flat virtual braids which do not preserve the forbidden relations
AU - Bardakov, V.
AU - Chuzhinov, B.
AU - Emel'yanenkov, I.
AU - Ivanov, M.
AU - Markhinina, E.
AU - Nasybullov, T.
AU - Panov, S.
AU - Singh, N.
AU - Vasyutkin, S.
AU - Yakhin, V.
AU - Vesnin, A.
N1 - Публикация для корректировки.
PY - 2023/12
Y1 - 2023/12
N2 - In the paper, we construct a representation $\theta:FVB_n\to{\rm Aut}(F_{2n})$ of the flat virtual braid group $FVB_n$ on $n$ strands by automorphisms of the free group $F_{2n}$ with $2n$ generators which does not preserve the forbidden relations in the flat virtual braid group. This representation gives a positive answer to the problem formulated by V. Bardakov in the list of unsolved problems in virtual knot theory and combinatorial knot theory by R. Fenn, D. Ilyutko, L. Kauffman and V. Manturov. Using this representation we construct a new group invariant for flat welded links. Also we find the set of normal generators of the groups $VP_n\cap H_n$ in $VB_n$, $FVP_n\cap FH_n$ in $FVB_n$, $GVP_n\cap GH_n$ in $GVB_n$, which play an important role in the study of the kernel of the representation $\theta$.
AB - In the paper, we construct a representation $\theta:FVB_n\to{\rm Aut}(F_{2n})$ of the flat virtual braid group $FVB_n$ on $n$ strands by automorphisms of the free group $F_{2n}$ with $2n$ generators which does not preserve the forbidden relations in the flat virtual braid group. This representation gives a positive answer to the problem formulated by V. Bardakov in the list of unsolved problems in virtual knot theory and combinatorial knot theory by R. Fenn, D. Ilyutko, L. Kauffman and V. Manturov. Using this representation we construct a new group invariant for flat welded links. Also we find the set of normal generators of the groups $VP_n\cap H_n$ in $VB_n$, $FVP_n\cap FH_n$ in $FVB_n$, $GVP_n\cap GH_n$ in $GVB_n$, which play an important role in the study of the kernel of the representation $\theta$.
UR - https://www.scopus.com/record/display.uri?eid=2-s2.0-85186938742&origin=inward&txGid=8f4bccdf38d6abb6aaf35bb1fcd317f1
UR - http://arxiv.org/abs/2010.03162
UR - https://www.mendeley.com/catalogue/b50ce3da-8235-368a-8970-a0d38efe5c87/
U2 - 10.1142/S0218216523500931
DO - 10.1142/S0218216523500931
M3 - Article
VL - 32
JO - Journal of Knot Theory and its Ramifications
JF - Journal of Knot Theory and its Ramifications
SN - 0218-2165
IS - 14
M1 - 2350093
ER -
ID: 59771728