Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
Recognizability in pre-Heyting and well-composed logics. / Maksimova, Larisa L.vovna; Yun, Veta Fedorovna.
в: Сибирские электронные математические известия, Том 16, 01.01.2019, стр. 427-434.Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
}
TY - JOUR
T1 - Recognizability in pre-Heyting and well-composed logics
AU - Maksimova, Larisa L.vovna
AU - Yun, Veta Fedorovna
PY - 2019/1/1
Y1 - 2019/1/1
N2 - In this paper the problems of recognizability and strong recognizavility, perceptibility and strong perceptibility in extensions of the minimal Johansson logic J [1] are studied. These concepts were introduced in [2, 3, 4]. Although the intuitionistic logic Int is recognizable over J [2], the problem of its strong recognizability over J is not solved. Here we prove that Int is strong recognizable and strong perceptible over the minimal pre-Heyting logic Od and the minimal well-composed logic JX. In addition, we prove the perceptibility of the formula F over JX. It is unknown whether the logic J+F is recognizable over J.
AB - In this paper the problems of recognizability and strong recognizavility, perceptibility and strong perceptibility in extensions of the minimal Johansson logic J [1] are studied. These concepts were introduced in [2, 3, 4]. Although the intuitionistic logic Int is recognizable over J [2], the problem of its strong recognizability over J is not solved. Here we prove that Int is strong recognizable and strong perceptible over the minimal pre-Heyting logic Od and the minimal well-composed logic JX. In addition, we prove the perceptibility of the formula F over JX. It is unknown whether the logic J+F is recognizable over J.
KW - Calculus
KW - Heyting algebra
KW - Johansson algebra
KW - Minimal logic
KW - Pre- Heyting logic
KW - Recognizability
KW - Strong recognizability
KW - Superintuitionistic logic
UR - http://www.scopus.com/inward/record.url?scp=85071154488&partnerID=8YFLogxK
UR - https://www.elibrary.ru/item.asp?id=42735070
U2 - 10.33048/semi.2019.16.024
DO - 10.33048/semi.2019.16.024
M3 - Article
AN - SCOPUS:85071154488
VL - 16
SP - 427
EP - 434
JO - Сибирские электронные математические известия
JF - Сибирские электронные математические известия
SN - 1813-3304
ER -
ID: 21348284