Standard

Rational Integrals of Natural Systems in a Magnetic Field. / Agapov, S. V.; Solov’ev, D. V.

в: Siberian Mathematical Journal, Том 66, № 3, 02.06.2025, стр. 609-617.

Результаты исследований: Научные публикации в периодических изданияхстатьяРецензирование

Harvard

Agapov, SV & Solov’ev, DV 2025, 'Rational Integrals of Natural Systems in a Magnetic Field', Siberian Mathematical Journal, Том. 66, № 3, стр. 609-617. https://doi.org/10.1134/S0037446625030012

APA

Agapov, S. V., & Solov’ev, D. V. (2025). Rational Integrals of Natural Systems in a Magnetic Field. Siberian Mathematical Journal, 66(3), 609-617. https://doi.org/10.1134/S0037446625030012

Vancouver

Agapov SV, Solov’ev DV. Rational Integrals of Natural Systems in a Magnetic Field. Siberian Mathematical Journal. 2025 июнь 2;66(3):609-617. doi: 10.1134/S0037446625030012

Author

Agapov, S. V. ; Solov’ev, D. V. / Rational Integrals of Natural Systems in a Magnetic Field. в: Siberian Mathematical Journal. 2025 ; Том 66, № 3. стр. 609-617.

BibTeX

@article{e6b26e18c5d64ad8b5feb94f1378e0b4,
title = "Rational Integrals of Natural Systems in a Magnetic Field",
abstract = "We study natural mechanical systems on the two-dimensional plane in a magnetic fieldthat admit an additional first integral which is rational in momenta.In this article,we construct new integrable examples of such systems and also studythe problem of existence of rational integrals in the absence of a magnetic field.",
keywords = "517.938, Hopf equation, first integral rational in momenta, integrability, magnetic field, natural system, potential",
author = "Agapov, {S. V.} and Solov{\textquoteright}ev, {D. V.}",
note = "The authors were supported by the Russian Science Foundation (Grant no. 24–11–00281, https://rscf.ru/project/24-11-00281/).",
year = "2025",
month = jun,
day = "2",
doi = "10.1134/S0037446625030012",
language = "English",
volume = "66",
pages = "609--617",
journal = "Siberian Mathematical Journal",
issn = "0037-4466",
publisher = "Pleiades Publishing",
number = "3",

}

RIS

TY - JOUR

T1 - Rational Integrals of Natural Systems in a Magnetic Field

AU - Agapov, S. V.

AU - Solov’ev, D. V.

N1 - The authors were supported by the Russian Science Foundation (Grant no. 24–11–00281, https://rscf.ru/project/24-11-00281/).

PY - 2025/6/2

Y1 - 2025/6/2

N2 - We study natural mechanical systems on the two-dimensional plane in a magnetic fieldthat admit an additional first integral which is rational in momenta.In this article,we construct new integrable examples of such systems and also studythe problem of existence of rational integrals in the absence of a magnetic field.

AB - We study natural mechanical systems on the two-dimensional plane in a magnetic fieldthat admit an additional first integral which is rational in momenta.In this article,we construct new integrable examples of such systems and also studythe problem of existence of rational integrals in the absence of a magnetic field.

KW - 517.938

KW - Hopf equation

KW - first integral rational in momenta

KW - integrability

KW - magnetic field

KW - natural system

KW - potential

UR - https://www.mendeley.com/catalogue/700d8053-6abc-386a-846f-213eb1d428df/

UR - https://www.scopus.com/record/display.uri?eid=2-s2.0-105007077094&origin=inward&txGid=60456642a7111ee5f23ef348a54479c5

U2 - 10.1134/S0037446625030012

DO - 10.1134/S0037446625030012

M3 - Article

VL - 66

SP - 609

EP - 617

JO - Siberian Mathematical Journal

JF - Siberian Mathematical Journal

SN - 0037-4466

IS - 3

ER -

ID: 67648364