Standard

Quasi-classical approximation for magnetic monopoles. / Kordyukov, Yu. A.; Taimanov, I. A.

в: Russian Mathematical Surveys, Том 75, № 6, 12.2020, стр. 1067-1088.

Результаты исследований: Научные публикации в периодических изданияхстатьяРецензирование

Harvard

Kordyukov, YA & Taimanov, IA 2020, 'Quasi-classical approximation for magnetic monopoles', Russian Mathematical Surveys, Том. 75, № 6, стр. 1067-1088. https://doi.org/10.1070/RM9969

APA

Kordyukov, Y. A., & Taimanov, I. A. (2020). Quasi-classical approximation for magnetic monopoles. Russian Mathematical Surveys, 75(6), 1067-1088. https://doi.org/10.1070/RM9969

Vancouver

Kordyukov YA, Taimanov IA. Quasi-classical approximation for magnetic monopoles. Russian Mathematical Surveys. 2020 дек.;75(6):1067-1088. doi: 10.1070/RM9969

Author

Kordyukov, Yu. A. ; Taimanov, I. A. / Quasi-classical approximation for magnetic monopoles. в: Russian Mathematical Surveys. 2020 ; Том 75, № 6. стр. 1067-1088.

BibTeX

@article{85f0070e3d09471882345f0ab893046d,
title = "Quasi-classical approximation for magnetic monopoles",
abstract = "A quasi-classical approximation is constructed to describe the eigenvalues of the magnetic Laplacian on a compact Riemannian manifold in the case when the magnetic field is given by a non-exact 2-form. For this, the multidimensional WKB method in the form of the Maslov canonical operator is applied. In this case, the canonical operator takes values in sections of a non-trivial line bundle. The constructed approximation is demonstrated for the example of the Dirac magnetic monopole on the two-dimensional sphere.",
keywords = "quasi-classical approximation, magnetic Laplacian, magnetic monopole, PERIODIC-SOLUTIONS, Magnetic Laplacian, Quasi-classical approximation, Magnetic monopole",
author = "Kordyukov, {Yu. A.} and Taimanov, {I. A.}",
note = "Publisher Copyright: {\textcopyright} 2020 Russian Academy of Sciences (DoM), London Mathematical Society, IOP Publishing Limited Copyright: Copyright 2021 Elsevier B.V., All rights reserved.",
year = "2020",
month = dec,
doi = "10.1070/RM9969",
language = "English",
volume = "75",
pages = "1067--1088",
journal = "Russian Mathematical Surveys",
issn = "0036-0279",
publisher = "IOP Publishing Ltd.",
number = "6",

}

RIS

TY - JOUR

T1 - Quasi-classical approximation for magnetic monopoles

AU - Kordyukov, Yu. A.

AU - Taimanov, I. A.

N1 - Publisher Copyright: © 2020 Russian Academy of Sciences (DoM), London Mathematical Society, IOP Publishing Limited Copyright: Copyright 2021 Elsevier B.V., All rights reserved.

PY - 2020/12

Y1 - 2020/12

N2 - A quasi-classical approximation is constructed to describe the eigenvalues of the magnetic Laplacian on a compact Riemannian manifold in the case when the magnetic field is given by a non-exact 2-form. For this, the multidimensional WKB method in the form of the Maslov canonical operator is applied. In this case, the canonical operator takes values in sections of a non-trivial line bundle. The constructed approximation is demonstrated for the example of the Dirac magnetic monopole on the two-dimensional sphere.

AB - A quasi-classical approximation is constructed to describe the eigenvalues of the magnetic Laplacian on a compact Riemannian manifold in the case when the magnetic field is given by a non-exact 2-form. For this, the multidimensional WKB method in the form of the Maslov canonical operator is applied. In this case, the canonical operator takes values in sections of a non-trivial line bundle. The constructed approximation is demonstrated for the example of the Dirac magnetic monopole on the two-dimensional sphere.

KW - quasi-classical approximation

KW - magnetic Laplacian

KW - magnetic monopole

KW - PERIODIC-SOLUTIONS

KW - Magnetic Laplacian

KW - Quasi-classical approximation

KW - Magnetic monopole

UR - http://www.scopus.com/inward/record.url?scp=85103054739&partnerID=8YFLogxK

U2 - 10.1070/RM9969

DO - 10.1070/RM9969

M3 - Article

VL - 75

SP - 1067

EP - 1088

JO - Russian Mathematical Surveys

JF - Russian Mathematical Surveys

SN - 0036-0279

IS - 6

ER -

ID: 28153423