Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
Quadratic Euclidean 1-Mean and 1-Median 2-Clustering Problem with constraints on the size of the clusters : Complexity and approximability. / Kel'manov, Alexander Vasil evich; Pyatkin, Artem Valer evich; Khandeev, Vladimir Il ich.
в: Trudy Instituta Matematiki i Mekhaniki UrO RAN, Том 25, № 4, 01.01.2019, стр. 69-78.Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
}
TY - JOUR
T1 - Quadratic Euclidean 1-Mean and 1-Median 2-Clustering Problem with constraints on the size of the clusters
T2 - Complexity and approximability
AU - Kel'manov, Alexander Vasil evich
AU - Pyatkin, Artem Valer evich
AU - Khandeev, Vladimir Il ich
N1 - Кельманов А.В., Пяткин А.В., Хандеев В.И. Квадратичная евклидова задача 2-кластеризации 1-Mean и 1-Median с ограничением на размеры кластеров: сложность и аппроксимируемость // Тр. Ин-та математики и механики УрО РАН. - 2019. - Т. 25. - № 4. - С. 69-78
PY - 2019/1/1
Y1 - 2019/1/1
N2 - We consider the problem of partitioning a set of N points in d-dimensional Euclidean space into two clusters minimizing the sum of the squared distances between each element and the center of the cluster to which it belongs. The center of the first cluster is its centroid (the geometric center). The center of the second cluster should be chosen among the points of the input set. We analyze the variant of the problem with given sizes (cardinalities) of the clusters; the sum of the sizes equals the cardinality of the input set. We prove that the problem is strongly NP-hard and there is no fully polynomial-time approximation scheme for its solution.
AB - We consider the problem of partitioning a set of N points in d-dimensional Euclidean space into two clusters minimizing the sum of the squared distances between each element and the center of the cluster to which it belongs. The center of the first cluster is its centroid (the geometric center). The center of the second cluster should be chosen among the points of the input set. We analyze the variant of the problem with given sizes (cardinalities) of the clusters; the sum of the sizes equals the cardinality of the input set. We prove that the problem is strongly NP-hard and there is no fully polynomial-time approximation scheme for its solution.
KW - 2-partition
KW - Approximation-preserving reduction
KW - Center
KW - Centroid
KW - Clustering
KW - Euclidean space
KW - Median
KW - Nonexistence of FPTAS
KW - Quadratic variation
KW - Strong NP-hardness
KW - Euclidean space
KW - clustering
KW - 2-partition
KW - quadratic variation
KW - center
KW - centroid
KW - median
KW - strong NP-hardness
KW - nonexistence of FPTAS
KW - approximation-preserving reduction
UR - http://www.scopus.com/inward/record.url?scp=85078544596&partnerID=8YFLogxK
UR - https://www.elibrary.ru/item.asp?id=41455522
U2 - 10.21538/0134-4889-2019-25-4-69-78
DO - 10.21538/0134-4889-2019-25-4-69-78
M3 - Article
AN - SCOPUS:85078544596
VL - 25
SP - 69
EP - 78
JO - Trudy Instituta Matematiki i Mekhaniki UrO RAN
JF - Trudy Instituta Matematiki i Mekhaniki UrO RAN
SN - 0134-4889
IS - 4
ER -
ID: 23287203