Standard

Proton Bunch Self-Modulation in Plasma with Density Gradient. / AWAKE Collaboration.

в: Physical Review Letters, Том 125, № 26, 264801, 28.12.2020.

Результаты исследований: Научные публикации в периодических изданияхстатьяРецензирование

Harvard

AWAKE Collaboration 2020, 'Proton Bunch Self-Modulation in Plasma with Density Gradient', Physical Review Letters, Том. 125, № 26, 264801. https://doi.org/10.1103/PhysRevLett.125.264801

APA

AWAKE Collaboration (2020). Proton Bunch Self-Modulation in Plasma with Density Gradient. Physical Review Letters, 125(26), [264801]. https://doi.org/10.1103/PhysRevLett.125.264801

Vancouver

AWAKE Collaboration. Proton Bunch Self-Modulation in Plasma with Density Gradient. Physical Review Letters. 2020 дек. 28;125(26):264801. doi: 10.1103/PhysRevLett.125.264801

Author

AWAKE Collaboration. / Proton Bunch Self-Modulation in Plasma with Density Gradient. в: Physical Review Letters. 2020 ; Том 125, № 26.

BibTeX

@article{ea450f3621764d28a5ef645bda160a1a,
title = "Proton Bunch Self-Modulation in Plasma with Density Gradient",
abstract = "We study experimentally the effect of linear plasma density gradients on the self-modulation of a 400 GeV proton bunch. Results show that a positive or negative gradient increases or decreases the number of microbunches and the relative charge per microbunch observed after 10 m of plasma. The measured modulation frequency also increases or decreases. With the largest positive gradient we observe two frequencies in the modulation power spectrum. Results are consistent with changes in wakefields' phase velocity due to plasma density gradients adding to the slow wakefields' phase velocity during self-modulation growth predicted by linear theory.",
author = "{(AWAKE Collaboration)} and F. Braunm{\"u}ller and T. Nechaeva and E. Adli and R. Agnello and M. Aladi and Y. Andrebe and O. Apsimon and R. Apsimon and Bachmann, {A. M.} and Baistrukov, {M. A.} and F. Batsch and M. Bergamaschi and P. Blanchard and Burrows, {P. N.} and B. Buttensch{\"o}n and A. Caldwell and J. Chappell and E. Chevallay and M. Chung and Cooke, {D. A.} and H. Damerau and C. Davut and G. Demeter and Deubner, {L. H.} and A. Dexter and Djotyan, {G. P.} and S. Doebert and J. Farmer and A. Fasoli and Fedosseev, {V. N.} and R. Fiorito and Fonseca, {R. A.} and F. Friebel and I. Furno and L. Garolfi and S. Gessner and B. Goddard and I. Gorgisyan and Gorn, {A. A.} and E. Granados and M. Granetzny and O. Grulke and E. Gschwendtner and V. Hafych and A. Hartin and A. Helm and Lotov, {K. V.} and Minakov, {V. A.} and Spitsyn, {R. I.} and Tuev, {P. V.}",
note = "Funding Information: This work was supported in parts by a Leverhulme Trust Research Project Grant No. RPG-2017-143 and by STFC (AWAKE-UK, Cockroft Institute core and UCL consolidated grants), United Kingdom; a Deutsche Forschungsgemeinschaft project grant PU 213-6/1 “Three-dimensional quasistatic simulations of beam self-modulation for plasma wakefield acceleration”; the National Research Foundation of Korea (No. NRF-2016R1A5A1013277 and No. NRF-2019R1F1A1062377); the Portuguese FCT—Foundation for Science and Technology, through Grants No. CERN/FIS-TEC/0032/2017, No. PTDC-FIS-PLA-2940-2014, No. UID/FIS/50010/2013, and No. SFRH/IF/01635/2015; NSERC and Conseil National de Recherches Canada for TRIUMF{\textquoteright}s contribution; the U.S. National Science Foundation under Grant No. PHY-1903316; the Wolfgang Gentner Programme of the German Federal Ministry of Education and Research (Grant No. 05E15CHA); and the Research Council of Norway. M. W. acknowledges the support of the Alexander von Humboldt Stiftung and DESY, Hamburg. Support of the Wigner Datacenter Cloud facility through the Awakelaser project and the support of P{\'e}ter L{\'e}vai is acknowledged. The work of V. H. has been supported by the European Union{\textquoteright}s Framework Programme for Research and Innovation Horizon 2020 under the Marie Sklodowska-Curie Grant Agreement No. 765710. The AWAKE Collaboration acknowledges the SPS team for their excellent proton delivery. Publisher Copyright: {\textcopyright} 2020 authors. Published by the American Physical Society. Copyright: Copyright 2021 Elsevier B.V., All rights reserved.",
year = "2020",
month = dec,
day = "28",
doi = "10.1103/PhysRevLett.125.264801",
language = "English",
volume = "125",
journal = "Physical Review Letters",
issn = "0031-9007",
publisher = "American Physical Society",
number = "26",

}

RIS

TY - JOUR

T1 - Proton Bunch Self-Modulation in Plasma with Density Gradient

AU - (AWAKE Collaboration)

AU - Braunmüller, F.

AU - Nechaeva, T.

AU - Adli, E.

AU - Agnello, R.

AU - Aladi, M.

AU - Andrebe, Y.

AU - Apsimon, O.

AU - Apsimon, R.

AU - Bachmann, A. M.

AU - Baistrukov, M. A.

AU - Batsch, F.

AU - Bergamaschi, M.

AU - Blanchard, P.

AU - Burrows, P. N.

AU - Buttenschön, B.

AU - Caldwell, A.

AU - Chappell, J.

AU - Chevallay, E.

AU - Chung, M.

AU - Cooke, D. A.

AU - Damerau, H.

AU - Davut, C.

AU - Demeter, G.

AU - Deubner, L. H.

AU - Dexter, A.

AU - Djotyan, G. P.

AU - Doebert, S.

AU - Farmer, J.

AU - Fasoli, A.

AU - Fedosseev, V. N.

AU - Fiorito, R.

AU - Fonseca, R. A.

AU - Friebel, F.

AU - Furno, I.

AU - Garolfi, L.

AU - Gessner, S.

AU - Goddard, B.

AU - Gorgisyan, I.

AU - Gorn, A. A.

AU - Granados, E.

AU - Granetzny, M.

AU - Grulke, O.

AU - Gschwendtner, E.

AU - Hafych, V.

AU - Hartin, A.

AU - Helm, A.

AU - Lotov, K. V.

AU - Minakov, V. A.

AU - Spitsyn, R. I.

AU - Tuev, P. V.

N1 - Funding Information: This work was supported in parts by a Leverhulme Trust Research Project Grant No. RPG-2017-143 and by STFC (AWAKE-UK, Cockroft Institute core and UCL consolidated grants), United Kingdom; a Deutsche Forschungsgemeinschaft project grant PU 213-6/1 “Three-dimensional quasistatic simulations of beam self-modulation for plasma wakefield acceleration”; the National Research Foundation of Korea (No. NRF-2016R1A5A1013277 and No. NRF-2019R1F1A1062377); the Portuguese FCT—Foundation for Science and Technology, through Grants No. CERN/FIS-TEC/0032/2017, No. PTDC-FIS-PLA-2940-2014, No. UID/FIS/50010/2013, and No. SFRH/IF/01635/2015; NSERC and Conseil National de Recherches Canada for TRIUMF’s contribution; the U.S. National Science Foundation under Grant No. PHY-1903316; the Wolfgang Gentner Programme of the German Federal Ministry of Education and Research (Grant No. 05E15CHA); and the Research Council of Norway. M. W. acknowledges the support of the Alexander von Humboldt Stiftung and DESY, Hamburg. Support of the Wigner Datacenter Cloud facility through the Awakelaser project and the support of Péter Lévai is acknowledged. The work of V. H. has been supported by the European Union’s Framework Programme for Research and Innovation Horizon 2020 under the Marie Sklodowska-Curie Grant Agreement No. 765710. The AWAKE Collaboration acknowledges the SPS team for their excellent proton delivery. Publisher Copyright: © 2020 authors. Published by the American Physical Society. Copyright: Copyright 2021 Elsevier B.V., All rights reserved.

PY - 2020/12/28

Y1 - 2020/12/28

N2 - We study experimentally the effect of linear plasma density gradients on the self-modulation of a 400 GeV proton bunch. Results show that a positive or negative gradient increases or decreases the number of microbunches and the relative charge per microbunch observed after 10 m of plasma. The measured modulation frequency also increases or decreases. With the largest positive gradient we observe two frequencies in the modulation power spectrum. Results are consistent with changes in wakefields' phase velocity due to plasma density gradients adding to the slow wakefields' phase velocity during self-modulation growth predicted by linear theory.

AB - We study experimentally the effect of linear plasma density gradients on the self-modulation of a 400 GeV proton bunch. Results show that a positive or negative gradient increases or decreases the number of microbunches and the relative charge per microbunch observed after 10 m of plasma. The measured modulation frequency also increases or decreases. With the largest positive gradient we observe two frequencies in the modulation power spectrum. Results are consistent with changes in wakefields' phase velocity due to plasma density gradients adding to the slow wakefields' phase velocity during self-modulation growth predicted by linear theory.

UR - http://www.scopus.com/inward/record.url?scp=85099137547&partnerID=8YFLogxK

U2 - 10.1103/PhysRevLett.125.264801

DO - 10.1103/PhysRevLett.125.264801

M3 - Article

C2 - 33449727

AN - SCOPUS:85099137547

VL - 125

JO - Physical Review Letters

JF - Physical Review Letters

SN - 0031-9007

IS - 26

M1 - 264801

ER -

ID: 27414895