Standard

Properties of the quasilinear clones containing creative functions. / Malcev, I. A.

в: Siberian Mathematical Journal, Том 58, № 4, 01.07.2017, стр. 644-648.

Результаты исследований: Научные публикации в периодических изданияхстатьяРецензирование

Harvard

Malcev, IA 2017, 'Properties of the quasilinear clones containing creative functions', Siberian Mathematical Journal, Том. 58, № 4, стр. 644-648. https://doi.org/10.1134/S0037446617040103

APA

Vancouver

Malcev IA. Properties of the quasilinear clones containing creative functions. Siberian Mathematical Journal. 2017 июль 1;58(4):644-648. doi: 10.1134/S0037446617040103

Author

Malcev, I. A. / Properties of the quasilinear clones containing creative functions. в: Siberian Mathematical Journal. 2017 ; Том 58, № 4. стр. 644-648.

BibTeX

@article{6c973cb0395f467daed17ac32dbce675,
title = "Properties of the quasilinear clones containing creative functions",
abstract = "We study the problem of characterizing clones on a three-element set by hyperidentities. We prove that there exists a hyperidentity separating any clone of quasilinear functions defined on the set {0, 1, 2} each of them is either a selector or such that all its values belong to {0, 1} from any noncreative clone constituted by such functions incomparable with the initial clone.",
keywords = "clone, clone identity, creative clone, hyperidentity, quasilinear function",
author = "Malcev, {I. A.}",
year = "2017",
month = jul,
day = "1",
doi = "10.1134/S0037446617040103",
language = "English",
volume = "58",
pages = "644--648",
journal = "Siberian Mathematical Journal",
issn = "0037-4466",
publisher = "MAIK NAUKA/INTERPERIODICA/SPRINGER",
number = "4",

}

RIS

TY - JOUR

T1 - Properties of the quasilinear clones containing creative functions

AU - Malcev, I. A.

PY - 2017/7/1

Y1 - 2017/7/1

N2 - We study the problem of characterizing clones on a three-element set by hyperidentities. We prove that there exists a hyperidentity separating any clone of quasilinear functions defined on the set {0, 1, 2} each of them is either a selector or such that all its values belong to {0, 1} from any noncreative clone constituted by such functions incomparable with the initial clone.

AB - We study the problem of characterizing clones on a three-element set by hyperidentities. We prove that there exists a hyperidentity separating any clone of quasilinear functions defined on the set {0, 1, 2} each of them is either a selector or such that all its values belong to {0, 1} from any noncreative clone constituted by such functions incomparable with the initial clone.

KW - clone

KW - clone identity

KW - creative clone

KW - hyperidentity

KW - quasilinear function

UR - http://www.scopus.com/inward/record.url?scp=85028529986&partnerID=8YFLogxK

U2 - 10.1134/S0037446617040103

DO - 10.1134/S0037446617040103

M3 - Article

AN - SCOPUS:85028529986

VL - 58

SP - 644

EP - 648

JO - Siberian Mathematical Journal

JF - Siberian Mathematical Journal

SN - 0037-4466

IS - 4

ER -

ID: 9916811