Standard

Pronormality and Submaximal X -Subgroups on Finite Groups : Dedicated to celebrate the Sixtieth anniversary of USTC. / Guo, Wenbin; Revin, Danila O.

в: Communications in Mathematics and Statistics, Том 6, № 3, 01.09.2018, стр. 289-317.

Результаты исследований: Научные публикации в периодических изданияхстатьяРецензирование

Harvard

APA

Vancouver

Guo W, Revin DO. Pronormality and Submaximal X -Subgroups on Finite Groups: Dedicated to celebrate the Sixtieth anniversary of USTC. Communications in Mathematics and Statistics. 2018 сент. 1;6(3):289-317. doi: 10.1007/s40304-018-0154-9

Author

Guo, Wenbin ; Revin, Danila O. / Pronormality and Submaximal X -Subgroups on Finite Groups : Dedicated to celebrate the Sixtieth anniversary of USTC. в: Communications in Mathematics and Statistics. 2018 ; Том 6, № 3. стр. 289-317.

BibTeX

@article{057e45b8772149768b1d17c23a77d27a,
title = "Pronormality and Submaximal X -Subgroups on Finite Groups: Dedicated to celebrate the Sixtieth anniversary of USTC",
abstract = "According to Hall, a subgroup H of a group G is said to be pronormal if H and Hg are conjugate in ⟨ H, Hg⟩ for every g∈ G. In this survey, we discuss the role of pronormality for some subgroups of finite groups: Hall subgroups, subgroups of odd index, submaximal X-subgroup, etc.",
keywords = "Hall π-subgroup, Pronormal subgroup, Subgroup of odd index, Submaximal X-subgroup, EXISTENCE, Hall pi-subgroup, ISOMORPHISM-PROBLEM, PRIMITIVE PERMUTATION-GROUPS, HALL SUBGROUPS, ODD INDEX, CRITERION, Submaximal (sic)-subgroup, CONJUGACY",
author = "Wenbin Guo and Revin, {Danila O.}",
note = "Publisher Copyright: {\textcopyright} 2018, School of Mathematical Sciences, University of Science and Technology of China and Springer-Verlag GmbH Germany, part of Springer Nature.",
year = "2018",
month = sep,
day = "1",
doi = "10.1007/s40304-018-0154-9",
language = "English",
volume = "6",
pages = "289--317",
journal = "Communications in Mathematics and Statistics",
issn = "2194-6701",
publisher = "Springer-Verlag GmbH and Co. KG",
number = "3",

}

RIS

TY - JOUR

T1 - Pronormality and Submaximal X -Subgroups on Finite Groups

T2 - Dedicated to celebrate the Sixtieth anniversary of USTC

AU - Guo, Wenbin

AU - Revin, Danila O.

N1 - Publisher Copyright: © 2018, School of Mathematical Sciences, University of Science and Technology of China and Springer-Verlag GmbH Germany, part of Springer Nature.

PY - 2018/9/1

Y1 - 2018/9/1

N2 - According to Hall, a subgroup H of a group G is said to be pronormal if H and Hg are conjugate in ⟨ H, Hg⟩ for every g∈ G. In this survey, we discuss the role of pronormality for some subgroups of finite groups: Hall subgroups, subgroups of odd index, submaximal X-subgroup, etc.

AB - According to Hall, a subgroup H of a group G is said to be pronormal if H and Hg are conjugate in ⟨ H, Hg⟩ for every g∈ G. In this survey, we discuss the role of pronormality for some subgroups of finite groups: Hall subgroups, subgroups of odd index, submaximal X-subgroup, etc.

KW - Hall π-subgroup

KW - Pronormal subgroup

KW - Subgroup of odd index

KW - Submaximal X-subgroup

KW - EXISTENCE

KW - Hall pi-subgroup

KW - ISOMORPHISM-PROBLEM

KW - PRIMITIVE PERMUTATION-GROUPS

KW - HALL SUBGROUPS

KW - ODD INDEX

KW - CRITERION

KW - Submaximal (sic)-subgroup

KW - CONJUGACY

UR - http://www.scopus.com/inward/record.url?scp=85053202701&partnerID=8YFLogxK

U2 - 10.1007/s40304-018-0154-9

DO - 10.1007/s40304-018-0154-9

M3 - Article

AN - SCOPUS:85053202701

VL - 6

SP - 289

EP - 317

JO - Communications in Mathematics and Statistics

JF - Communications in Mathematics and Statistics

SN - 2194-6701

IS - 3

ER -

ID: 16568331