Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
Profinite Locally Finite Quasivarieties. / Nurakunov, Anvar M.; Schwidefsky, Marina V.
в: Studia Logica, Том 112, № 4, 08.2024, стр. 835-859.Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
}
TY - JOUR
T1 - Profinite Locally Finite Quasivarieties
AU - Nurakunov, Anvar M.
AU - Schwidefsky, Marina V.
N1 - The authors are grateful to the referee for thorough reading the paper and many helpful comments. The second author was supported by the Russian Science Foundation, project no. 22-21-00104.
PY - 2024/8
Y1 - 2024/8
N2 - Let K and M be locally finite quasivarieties of finite type such that K⊂ M . If K is profinite then the filter [K, M] in the quasivariety lattice Lq (M) is an atomic lattice and K has an independent quasi-equational basis relative to M . Applications of these results for lattices, unary algebras, groups, unary algebras, and distributive algebras are presented which concern some well-known problems on standard topological quasivarieties and other problems.
AB - Let K and M be locally finite quasivarieties of finite type such that K⊂ M . If K is profinite then the filter [K, M] in the quasivariety lattice Lq (M) is an atomic lattice and K has an independent quasi-equational basis relative to M . Applications of these results for lattices, unary algebras, groups, unary algebras, and distributive algebras are presented which concern some well-known problems on standard topological quasivarieties and other problems.
KW - Inverse limit
KW - Locally finite
KW - Profinite structure
KW - Quasi-equational basis
KW - Quasivariety
KW - Standard quasivariety
UR - https://www.scopus.com/record/display.uri?eid=2-s2.0-85174198959&origin=inward&txGid=8cd519e00ba615e3791ee2b144979178
UR - https://www.mendeley.com/catalogue/df5acda4-47ac-3a11-9edb-45ed4d1908a1/
U2 - 10.1007/s11225-023-10077-y
DO - 10.1007/s11225-023-10077-y
M3 - Article
VL - 112
SP - 835
EP - 859
JO - Studia Logica
JF - Studia Logica
SN - 0039-3215
IS - 4
ER -
ID: 59181181