Standard

Probabilistic Estimation of Matrix Condition Number. / Antyufeev, V. S.

в: Journal of Mathematical Sciences (United States), Том 246, № 6, 01.05.2020, стр. 755-762.

Результаты исследований: Научные публикации в периодических изданияхстатьяРецензирование

Harvard

Antyufeev, VS 2020, 'Probabilistic Estimation of Matrix Condition Number', Journal of Mathematical Sciences (United States), Том. 246, № 6, стр. 755-762. https://doi.org/10.1007/s10958-020-04778-1

APA

Antyufeev, V. S. (2020). Probabilistic Estimation of Matrix Condition Number. Journal of Mathematical Sciences (United States), 246(6), 755-762. https://doi.org/10.1007/s10958-020-04778-1

Vancouver

Antyufeev VS. Probabilistic Estimation of Matrix Condition Number. Journal of Mathematical Sciences (United States). 2020 май 1;246(6):755-762. doi: 10.1007/s10958-020-04778-1

Author

Antyufeev, V. S. / Probabilistic Estimation of Matrix Condition Number. в: Journal of Mathematical Sciences (United States). 2020 ; Том 246, № 6. стр. 755-762.

BibTeX

@article{942947dc90c94c4a8ac0fdd009a0b555,
title = "Probabilistic Estimation of Matrix Condition Number",
abstract = "We consider ill-conditioned matrices of systems of linear algebraic equations with random error of vector right-hand side. We study the condition number ν of the matrix of the system. We show that, under certain natural assumptions, the number ν can be considerably diminished. Bibliography: 3 titles. Illustrations: 3 figures.",
author = "Antyufeev, {V. S.}",
year = "2020",
month = may,
day = "1",
doi = "10.1007/s10958-020-04778-1",
language = "English",
volume = "246",
pages = "755--762",
journal = "Journal of Mathematical Sciences (United States)",
issn = "1072-3374",
publisher = "Springer Nature",
number = "6",

}

RIS

TY - JOUR

T1 - Probabilistic Estimation of Matrix Condition Number

AU - Antyufeev, V. S.

PY - 2020/5/1

Y1 - 2020/5/1

N2 - We consider ill-conditioned matrices of systems of linear algebraic equations with random error of vector right-hand side. We study the condition number ν of the matrix of the system. We show that, under certain natural assumptions, the number ν can be considerably diminished. Bibliography: 3 titles. Illustrations: 3 figures.

AB - We consider ill-conditioned matrices of systems of linear algebraic equations with random error of vector right-hand side. We study the condition number ν of the matrix of the system. We show that, under certain natural assumptions, the number ν can be considerably diminished. Bibliography: 3 titles. Illustrations: 3 figures.

UR - http://www.scopus.com/inward/record.url?scp=85082802623&partnerID=8YFLogxK

U2 - 10.1007/s10958-020-04778-1

DO - 10.1007/s10958-020-04778-1

M3 - Article

AN - SCOPUS:85082802623

VL - 246

SP - 755

EP - 762

JO - Journal of Mathematical Sciences (United States)

JF - Journal of Mathematical Sciences (United States)

SN - 1072-3374

IS - 6

ER -

ID: 23949208