Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
Permutation Groups and Ideals of Turing Degrees. / Morozov, A. s.; Puzarenko, V. g.; Faizrakhmanov, M. kh.
в: Algebra and Logic, Том 63, № 2, 22.01.2025, стр. 141-152.Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
}
TY - JOUR
T1 - Permutation Groups and Ideals of Turing Degrees
AU - Morozov, A. s.
AU - Puzarenko, V. g.
AU - Faizrakhmanov, M. kh.
N1 - A. S. Morozov is supported by RFBR (project No. 20-01-00300 A) and by the Ministry of Education and Science of Russia (base project No. FWNF-2022-0012). V. G. Puzarenko is supported by Mathematical Center in Akademgorodok, Agreement No. 075-15-2022-282. M. Kh. Faizrakhmanov is the work was carried out as part of the developmental program for Scientific-Educational Mathematical Center (SEMC) in Volga Federal District, Agreement No. 075-02-2022-882.
PY - 2025/1/22
Y1 - 2025/1/22
N2 - We study degrees and degree spectra of groups defined on a set of permutations of the natural numbers ω whose degrees belong to a Turing ideal I. A necessary condition and a sufficient condition are stated which specify whether an arbitrary Turing degree belongs to the degree spectrum of a group. Nonprincipal ideals I for which the group has or does not have a degree are exemplified.
AB - We study degrees and degree spectra of groups defined on a set of permutations of the natural numbers ω whose degrees belong to a Turing ideal I. A necessary condition and a sufficient condition are stated which specify whether an arbitrary Turing degree belongs to the degree spectrum of a group. Nonprincipal ideals I for which the group has or does not have a degree are exemplified.
UR - https://www.scopus.com/record/display.uri?eid=2-s2.0-85217432183&origin=inward&txGid=a0e2952d9a2ed732fc8363a7e226aaf1
UR - https://doi.org/10.33048/alglog.2024.63.205
U2 - 10.1007/s10469-025-09777-2
DO - 10.1007/s10469-025-09777-2
M3 - Article
VL - 63
SP - 141
EP - 152
JO - Algebra and Logic
JF - Algebra and Logic
SN - 0002-5232
IS - 2
ER -
ID: 64714013