Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
Periodic Groups Saturated with Finite Simple Symplectic Groups of Dimension 6 over Fields of Odd Characteristics. / Lytkina, D. V.; Mazurov, V. D.
в: Siberian Mathematical Journal, Том 63, № 6, 11.2022, стр. 1117-1120.Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
}
TY - JOUR
T1 - Periodic Groups Saturated with Finite Simple Symplectic Groups of Dimension 6 over Fields of Odd Characteristics
AU - Lytkina, D. V.
AU - Mazurov, V. D.
N1 - Funding Information: The work was supported by the Russian Science Foundation (Grant no. 19–11–00039). Publisher Copyright: © 2022, Pleiades Publishing, Ltd.
PY - 2022/11
Y1 - 2022/11
N2 - We prove that a periodic group is locally finite, if its every finite subgroup liesin a subgroup isomorphic to a simple symplectic group of dimension 6 oversome field of odd order and the centralizer of every involution of this groupis locally finite. Moreover, such group is isomorphic to a simple symplecticgroup of dimension 6 over a suitable locally finite field of odd characteristic.
AB - We prove that a periodic group is locally finite, if its every finite subgroup liesin a subgroup isomorphic to a simple symplectic group of dimension 6 oversome field of odd order and the centralizer of every involution of this groupis locally finite. Moreover, such group is isomorphic to a simple symplecticgroup of dimension 6 over a suitable locally finite field of odd characteristic.
KW - 512.542
KW - group of Lie type
KW - group saturated with a set of groups
KW - locally finite group
KW - periodic group
UR - http://www.scopus.com/inward/record.url?scp=85143601640&partnerID=8YFLogxK
UR - https://www.mendeley.com/catalogue/3bfdefc4-c504-3bb1-8797-4c1b9873961a/
U2 - 10.1134/S0037446622060118
DO - 10.1134/S0037446622060118
M3 - Article
AN - SCOPUS:85143601640
VL - 63
SP - 1117
EP - 1120
JO - Siberian Mathematical Journal
JF - Siberian Mathematical Journal
SN - 0037-4466
IS - 6
ER -
ID: 40814127