Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
Performance of missing transverse momentum reconstruction with the ATLAS detector using proton–proton collisions at √s=13TeV. / The ATLAS collaboration; Bogdanchikov, A. G.; Казанин, Василий Федорович и др.
в: European Physical Journal C, Том 78, № 11, 903, 08.11.2018.Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
}
TY - JOUR
T1 - Performance of missing transverse momentum reconstruction with the ATLAS detector using proton–proton collisions at √s=13TeV
AU - The ATLAS collaboration
AU - Aaboud, M.
AU - Aad, G.
AU - Abbott, B.
AU - Abdinov, O.
AU - Abeloos, B.
AU - Abidi, S. H.
AU - AbouZeid, O. S.
AU - Abraham, N. L.
AU - Abramowicz, H.
AU - Abreu, H.
AU - Abreu, R.
AU - Abulaiti, Y.
AU - Acharya, B. S.
AU - Adachi, S.
AU - Adamczyk, L.
AU - Adelman, J.
AU - Adersberger, M.
AU - Adye, T.
AU - Affolder, A. A.
AU - Afik, Y.
AU - Agatonovic-Jovin, T.
AU - Agheorghiesei, C.
AU - Aguilar-Saavedra, J. A.
AU - Ahmadov, F.
AU - Aielli, G.
AU - Akatsuka, S.
AU - Akerstedt, H.
AU - Åkesson, T. P.A.
AU - Akilli, E.
AU - Akimov, A. V.
AU - Alberghi, G. L.
AU - Albert, J.
AU - Albicocco, P.
AU - Alconada Verzini, M. J.
AU - Alderweireldt, S.
AU - Aleksa, M.
AU - Aleksandrov, I. N.
AU - Alexa, C.
AU - Alexander, G.
AU - Anisenkov, A. V.
AU - Baldin, E. M.
AU - Bobrovnikov, V. S.
AU - Buzykaev, A. R.
AU - Kharlamov, A. G.
AU - Kharlamova, T.
AU - Korol, A. A.
AU - Maslennikov, A. L.
AU - Peleganchuk, S. V.
AU - Talyshev, A. A.
AU - Tikhonov, Yu A.
AU - Bogdanchikov, A. G.
AU - Казанин, Василий Федорович
AU - Максимов, Дмитрий Александрович
AU - Подберёзко, Павел Сергеевич
AU - Резанова, Ольга Леонардовна
AU - Сухарев, Андрей Михайлович
N1 - Funding Information: Acknowledgements We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently. We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIEN-CIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF and DNSRC, Denmark; IN2P3-CNRS, CEA-DRF/IRFU, France; SRNSFG, Georgia; BMBF, HGF, and MPG, Germany; GSRT, Greece; RGC, Hong Kong SAR, China; ISF, I-CORE and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; NWO, Netherlands; RCN, Norway; MNiSW and NCN, Poland; FCT, Portugal; MNE/IFA, Romania; MES of Russia and NRC KI, Russian Federation; JINR; MESTD, Serbia; MSSR, Slovakia; ARRS and MIZŠ, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Wal-lenberg Foundation, Sweden; SERI, SNSF and Cantons of Bern and Geneva, Switzerland; MOST, Taiwan; TAEK, Turkey; STFC, United Kingdom; DOE and NSF, United States of America. In addition, individual groups and members have received support from BCKDF, the Canada Council, CANARIE, CRC, Compute Canada, FQRNT, and the Ontario Innovation Trust, Canada; EPLANET, ERC, ERDF, FP7, Horizon 2020 and Marie Skłodowska-Curie Actions, European Union; Investissements d’Avenir Labex and Idex, ANR, Région Auvergne and Fondation Partager le Savoir, France; DFG and AvH Foundation, Germany; Herakleitos, Thales and Aristeia programmes co-financed by EU-ESF and the Greek NSRF; BSF, GIF and Minerva, Israel; BRF, Norway; CERCA Programme Generalitat de Catalunya, Generalitat Valenciana, Spain; the Royal Society and Leverhulme Trust, United Kingdom. The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN, the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA), the Tier-2 facilities worldwide and large non-WLCG resource providers. Major contributors of computing resources are listed in Ref. [46]. Publisher Copyright: © 2018, CERN for the benefit of the ATLAS collaboration.
PY - 2018/11/8
Y1 - 2018/11/8
N2 - The performance of the missing transverse momentum (ETmiss) reconstruction with the ATLAS detector is evaluated using data collected in proton–proton collisions at the LHC at a centre-of-mass energy of 13 TeV in 2015. To reconstruct ETmiss, fully calibrated electrons, muons, photons, hadronically decaying τ-leptons , and jets reconstructed from calorimeter energy deposits and charged-particle tracks are used. These are combined with the soft hadronic activity measured by reconstructed charged-particle tracks not associated with the hard objects. Possible double counting of contributions from reconstructed charged-particle tracks from the inner detector, energy deposits in the calorimeter, and reconstructed muons from the muon spectrometer is avoided by applying a signal ambiguity resolution procedure which rejects already used signals when combining the various ETmiss contributions. The individual terms as well as the overall reconstructed ETmiss are evaluated with various performance metrics for scale (linearity), resolution, and sensitivity to the data-taking conditions. The method developed to determine the systematic uncertainties of the ETmiss scale and resolution is discussed. Results are shown based on the full 2015 data sample corresponding to an integrated luminosity of 3.2fb-1.
AB - The performance of the missing transverse momentum (ETmiss) reconstruction with the ATLAS detector is evaluated using data collected in proton–proton collisions at the LHC at a centre-of-mass energy of 13 TeV in 2015. To reconstruct ETmiss, fully calibrated electrons, muons, photons, hadronically decaying τ-leptons , and jets reconstructed from calorimeter energy deposits and charged-particle tracks are used. These are combined with the soft hadronic activity measured by reconstructed charged-particle tracks not associated with the hard objects. Possible double counting of contributions from reconstructed charged-particle tracks from the inner detector, energy deposits in the calorimeter, and reconstructed muons from the muon spectrometer is avoided by applying a signal ambiguity resolution procedure which rejects already used signals when combining the various ETmiss contributions. The individual terms as well as the overall reconstructed ETmiss are evaluated with various performance metrics for scale (linearity), resolution, and sensitivity to the data-taking conditions. The method developed to determine the systematic uncertainties of the ETmiss scale and resolution is discussed. Results are shown based on the full 2015 data sample corresponding to an integrated luminosity of 3.2fb-1.
KW - PARTON DISTRIBUTIONS
UR - http://www.scopus.com/inward/record.url?scp=85056223624&partnerID=8YFLogxK
U2 - 10.1140/epjc/s10052-018-6288-9
DO - 10.1140/epjc/s10052-018-6288-9
M3 - Article
C2 - 30880822
AN - SCOPUS:85056223624
VL - 78
JO - European Physical Journal C
JF - European Physical Journal C
SN - 1434-6044
IS - 11
M1 - 903
ER -
ID: 17364729