Результаты исследований: Публикации в книгах, отчётах, сборниках, трудах конференций › статья в сборнике материалов конференции › научная › Рецензирование
Parameterized complexity of DAG partitioning. / Van Bevern, René; Bredereck, Robert; Chopin, Morgan и др.
Algorithms and Complexity - 8th International Conference, CIAC 2013, Proceedings. 2013. стр. 49-60 (Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Том 7878 LNCS).Результаты исследований: Публикации в книгах, отчётах, сборниках, трудах конференций › статья в сборнике материалов конференции › научная › Рецензирование
}
TY - GEN
T1 - Parameterized complexity of DAG partitioning
AU - Van Bevern, René
AU - Bredereck, Robert
AU - Chopin, Morgan
AU - Hartung, Sepp
AU - Hüffner, Falk
AU - Nichterlein, André
AU - Suchý, Ondřej
PY - 2013/9/9
Y1 - 2013/9/9
N2 - The goal of tracking the origin of short, distinctive phrases (memes) that propagate through the web in reaction to current events has been formalized as DAG Partitioning: given a directed acyclic graph, delete edges of minimum weight such that each resulting connected component of the underlying undirected graph contains only one sink. Motivated by NP-hardness and hardness of approximation results, we consider the parameterized complexity of this problem. We show that it can be solved in O(2k·n2) time, where k is the number of edge deletions, proving fixed-parameter tractability for parameter k. We then show that unless the Exponential Time Hypothesis (ETH) fails, this cannot be improved to 2o(k)·nO(1); further, DAG Partitioning does not have a polynomial kernel unless NP ⊆ coNP/poly. Finally, given a tree decomposition of width w, we show how to solve DAG Partitioning in 2o(w2)·n time, improving a known algorithm for the parameter pathwidth.
AB - The goal of tracking the origin of short, distinctive phrases (memes) that propagate through the web in reaction to current events has been formalized as DAG Partitioning: given a directed acyclic graph, delete edges of minimum weight such that each resulting connected component of the underlying undirected graph contains only one sink. Motivated by NP-hardness and hardness of approximation results, we consider the parameterized complexity of this problem. We show that it can be solved in O(2k·n2) time, where k is the number of edge deletions, proving fixed-parameter tractability for parameter k. We then show that unless the Exponential Time Hypothesis (ETH) fails, this cannot be improved to 2o(k)·nO(1); further, DAG Partitioning does not have a polynomial kernel unless NP ⊆ coNP/poly. Finally, given a tree decomposition of width w, we show how to solve DAG Partitioning in 2o(w2)·n time, improving a known algorithm for the parameter pathwidth.
UR - http://www.scopus.com/inward/record.url?scp=84883414008&partnerID=8YFLogxK
U2 - 10.1007/978-3-642-38233-8_5
DO - 10.1007/978-3-642-38233-8_5
M3 - Conference contribution
AN - SCOPUS:84883414008
SN - 9783642382321
T3 - Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
SP - 49
EP - 60
BT - Algorithms and Complexity - 8th International Conference, CIAC 2013, Proceedings
T2 - 8th International Conference on Algorithms and Complexity, CIAC 2013
Y2 - 22 May 2013 through 24 May 2013
ER -
ID: 22340943