Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
Parameterized algorithms and data reduction for the short secluded s-t-path problem. / van Bevern, René; Fluschnik, Till; Tsidulko, Oxana Yu.
в: Networks, Том 75, № 1, 01.2020, стр. 34-63.Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
}
TY - JOUR
T1 - Parameterized algorithms and data reduction for the short secluded s-t-path problem
AU - van Bevern, René
AU - Fluschnik, Till
AU - Tsidulko, Oxana Yu
N1 - Publisher Copyright: © 2019 Wiley Periodicals, Inc. Copyright: Copyright 2019 Elsevier B.V., All rights reserved.
PY - 2020/1
Y1 - 2020/1
N2 - Given a graph G = (V, E), two vertices s, t ∈ V, and two integers k, ℓ, the Short Secluded Path problem is to find a simple s-t-path with at most k vertices and ℓ neighbors. We study the parameterized complexity of the problem with respect to four structural graph parameters: the vertex cover number, treewidth, feedback vertex number, and feedback edge number. In particular, we completely settle the question of the existence of problem kernels with size polynomial in these parameters and their combinations with k and ℓ. We also obtain a 2O(tw) · ℓ2 · n-time algorithm for n-vertex graphs of treewidth tw, which yields subexponential-time algorithms in several graph classes.
AB - Given a graph G = (V, E), two vertices s, t ∈ V, and two integers k, ℓ, the Short Secluded Path problem is to find a simple s-t-path with at most k vertices and ℓ neighbors. We study the parameterized complexity of the problem with respect to four structural graph parameters: the vertex cover number, treewidth, feedback vertex number, and feedback edge number. In particular, we completely settle the question of the existence of problem kernels with size polynomial in these parameters and their combinations with k and ℓ. We also obtain a 2O(tw) · ℓ2 · n-time algorithm for n-vertex graphs of treewidth tw, which yields subexponential-time algorithms in several graph classes.
KW - fixed-parameter tractability
KW - kernelization lower bounds
KW - NP-hard problem
KW - problem kernelization
KW - subexponential time
KW - treewidth
KW - EULERIAN EXTENSION
KW - APPROXIMATION
KW - COMPLEXITY
UR - http://www.scopus.com/inward/record.url?scp=85071289401&partnerID=8YFLogxK
U2 - 10.1002/net.21904
DO - 10.1002/net.21904
M3 - Article
AN - SCOPUS:85071289401
VL - 75
SP - 34
EP - 63
JO - Networks
JF - Networks
SN - 0028-3045
IS - 1
ER -
ID: 21344933