Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
Palindromic widths of nilpotent and wreath products. / Bardakov, Valeriy G.; Bryukhanov, Oleg V.; Gongopadhyay, Krishnendu.
в: Proceedings of the Indian Academy of Sciences: Mathematical Sciences, Том 127, № 1, 02.2017, стр. 99-108.Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
}
TY - JOUR
T1 - Palindromic widths of nilpotent and wreath products
AU - Bardakov, Valeriy G.
AU - Bryukhanov, Oleg V.
AU - Gongopadhyay, Krishnendu
N1 - Publisher Copyright: © Indian Academy of Sciences.
PY - 2017/2
Y1 - 2017/2
N2 - We prove that the nilpotent product of a set of groups A1,..., As has finite palindromic width if and only if the palindromic widths of Ai, i = 1,..., s, are finite. We give a new proof that the commutator width of Fn ς K is infinite, where Fn is a free group of rank n ≥ 2 and K is a finite group. This result, combining with a result of Fink [9] gives examples of groups with infinite commutator width but finite palindromic width with respect to some generating set.
AB - We prove that the nilpotent product of a set of groups A1,..., As has finite palindromic width if and only if the palindromic widths of Ai, i = 1,..., s, are finite. We give a new proof that the commutator width of Fn ς K is infinite, where Fn is a free group of rank n ≥ 2 and K is a finite group. This result, combining with a result of Fink [9] gives examples of groups with infinite commutator width but finite palindromic width with respect to some generating set.
KW - Commutator width
KW - Nilpotent product
KW - Palindromic width
KW - Wreath products
KW - commutator width
KW - wreath products
KW - nilpotent product
UR - http://www.scopus.com/inward/record.url?scp=85012036980&partnerID=8YFLogxK
U2 - 10.1007/s12044-016-0296-1
DO - 10.1007/s12044-016-0296-1
M3 - Article
AN - SCOPUS:85012036980
VL - 127
SP - 99
EP - 108
JO - Proceedings of the Indian Academy of Sciences: Mathematical Sciences
JF - Proceedings of the Indian Academy of Sciences: Mathematical Sciences
SN - 0253-4142
IS - 1
ER -
ID: 9033606