Standard

Orthogonal Curvilinear Coordinate Systems and Torsion-Free Sheaves over Reducible Spectral Curves. / Mironov, A. E.; Senninger, A.; Taimanov, I. A.

в: Mathematical Notes, Том 114, № 3-4, 10.2023, стр. 573-582.

Результаты исследований: Научные публикации в периодических изданияхстатьяРецензирование

Harvard

APA

Vancouver

Mironov AE, Senninger A, Taimanov IA. Orthogonal Curvilinear Coordinate Systems and Torsion-Free Sheaves over Reducible Spectral Curves. Mathematical Notes. 2023 окт.;114(3-4):573-582. doi: 10.1134/S0001434623090250

Author

Mironov, A. E. ; Senninger, A. ; Taimanov, I. A. / Orthogonal Curvilinear Coordinate Systems and Torsion-Free Sheaves over Reducible Spectral Curves. в: Mathematical Notes. 2023 ; Том 114, № 3-4. стр. 573-582.

BibTeX

@article{0caa2822f4e143a8aa25077919372506,
title = "Orthogonal Curvilinear Coordinate Systems and Torsion-Free Sheaves over Reducible Spectral Curves",
abstract = "The methods of finite-gap integration are used to construct orthogonal curvilinear coordinate systems in the Euclidean space corresponding to sheaves of rank one without torsion over reducible singular spectral curves.",
keywords = "finite-gap integration, orthogonal curvilinear coordinates, spectral curve, torsion-free sheaf",
author = "Mironov, {A. E.} and A. Senninger and Taimanov, {I. A.}",
note = "This work was financially supported by the Russian Science Foundation, project 19-11-00044-P, https://rscf.ru/en/project/19-11-00044/ . Публикация для корректировки.",
year = "2023",
month = oct,
doi = "10.1134/S0001434623090250",
language = "English",
volume = "114",
pages = "573--582",
journal = "Mathematical Notes",
issn = "0001-4346",
publisher = "PLEIADES PUBLISHING INC",
number = "3-4",

}

RIS

TY - JOUR

T1 - Orthogonal Curvilinear Coordinate Systems and Torsion-Free Sheaves over Reducible Spectral Curves

AU - Mironov, A. E.

AU - Senninger, A.

AU - Taimanov, I. A.

N1 - This work was financially supported by the Russian Science Foundation, project 19-11-00044-P, https://rscf.ru/en/project/19-11-00044/ . Публикация для корректировки.

PY - 2023/10

Y1 - 2023/10

N2 - The methods of finite-gap integration are used to construct orthogonal curvilinear coordinate systems in the Euclidean space corresponding to sheaves of rank one without torsion over reducible singular spectral curves.

AB - The methods of finite-gap integration are used to construct orthogonal curvilinear coordinate systems in the Euclidean space corresponding to sheaves of rank one without torsion over reducible singular spectral curves.

KW - finite-gap integration

KW - orthogonal curvilinear coordinates

KW - spectral curve

KW - torsion-free sheaf

UR - https://www.scopus.com/record/display.uri?eid=2-s2.0-85174582212&origin=inward&txGid=fe9cf2865b9c2c51867c1542cf2b640e

UR - https://www.mendeley.com/catalogue/8a5ca8e1-ee93-3363-aad5-4ebc1cdd38b1/

U2 - 10.1134/S0001434623090250

DO - 10.1134/S0001434623090250

M3 - Article

VL - 114

SP - 573

EP - 582

JO - Mathematical Notes

JF - Mathematical Notes

SN - 0001-4346

IS - 3-4

ER -

ID: 59547035