Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
Orthogonal Curvilinear Coordinate Systems and Torsion-Free Sheaves over Reducible Spectral Curves. / Mironov, A. E.; Senninger, A.; Taimanov, I. A.
в: Mathematical Notes, Том 114, № 3-4, 10.2023, стр. 573-582.Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
}
TY - JOUR
T1 - Orthogonal Curvilinear Coordinate Systems and Torsion-Free Sheaves over Reducible Spectral Curves
AU - Mironov, A. E.
AU - Senninger, A.
AU - Taimanov, I. A.
N1 - This work was financially supported by the Russian Science Foundation, project 19-11-00044-P, https://rscf.ru/en/project/19-11-00044/ . Публикация для корректировки.
PY - 2023/10
Y1 - 2023/10
N2 - The methods of finite-gap integration are used to construct orthogonal curvilinear coordinate systems in the Euclidean space corresponding to sheaves of rank one without torsion over reducible singular spectral curves.
AB - The methods of finite-gap integration are used to construct orthogonal curvilinear coordinate systems in the Euclidean space corresponding to sheaves of rank one without torsion over reducible singular spectral curves.
KW - finite-gap integration
KW - orthogonal curvilinear coordinates
KW - spectral curve
KW - torsion-free sheaf
UR - https://www.scopus.com/record/display.uri?eid=2-s2.0-85174582212&origin=inward&txGid=fe9cf2865b9c2c51867c1542cf2b640e
UR - https://www.mendeley.com/catalogue/8a5ca8e1-ee93-3363-aad5-4ebc1cdd38b1/
U2 - 10.1134/S0001434623090250
DO - 10.1134/S0001434623090250
M3 - Article
VL - 114
SP - 573
EP - 582
JO - Mathematical Notes
JF - Mathematical Notes
SN - 0001-4346
IS - 3-4
ER -
ID: 59547035