Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
Optimization of Randomized Monte Carlo Algorithms for Solving Problems with Random Parameters. / Mikhailov, G. A.
в: Doklady Mathematics, Том 98, № 2, 01.09.2018, стр. 448-451.Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
}
TY - JOUR
T1 - Optimization of Randomized Monte Carlo Algorithms for Solving Problems with Random Parameters
AU - Mikhailov, G. A.
N1 - Publisher Copyright: © 2018, Pleiades Publishing, Ltd.
PY - 2018/9/1
Y1 - 2018/9/1
N2 - Randomized Monte Carlo algorithms intended for statistical kernel estimation of the averaged solution to a problem with random baseline parameters are optimized. For this purpose, a criterion for the complexity of a functional Monte Carlo estimate is formulated. The algorithms involve a splitting method in which, for each realization of the parameters, a certain number of trajectories of the corresponding baseline process are constructed.
AB - Randomized Monte Carlo algorithms intended for statistical kernel estimation of the averaged solution to a problem with random baseline parameters are optimized. For this purpose, a criterion for the complexity of a functional Monte Carlo estimate is formulated. The algorithms involve a splitting method in which, for each realization of the parameters, a certain number of trajectories of the corresponding baseline process are constructed.
UR - http://www.scopus.com/inward/record.url?scp=85056333269&partnerID=8YFLogxK
U2 - 10.1134/S1064562418060157
DO - 10.1134/S1064562418060157
M3 - Article
AN - SCOPUS:85056333269
VL - 98
SP - 448
EP - 451
JO - Doklady Mathematics
JF - Doklady Mathematics
SN - 1064-5624
IS - 2
ER -
ID: 17415135