Standard

Optimization of a Numerical-Statistical Algorithm for Estimating the Mean Particle Flow in a Bounded Random Medium with Multiplication. / Lotova, G. Z.; Mikhailov, G. A.; Rozhenko, S. A.

в: Computational Mathematics and Mathematical Physics, Том 64, № 11, 25.12.2024, стр. 2705-2715.

Результаты исследований: Научные публикации в периодических изданияхстатьяРецензирование

Harvard

APA

Vancouver

Lotova GZ, Mikhailov GA, Rozhenko SA. Optimization of a Numerical-Statistical Algorithm for Estimating the Mean Particle Flow in a Bounded Random Medium with Multiplication. Computational Mathematics and Mathematical Physics. 2024 дек. 25;64(11):2705-2715. doi: 10.1134/S0965542524701422

Author

Lotova, G. Z. ; Mikhailov, G. A. ; Rozhenko, S. A. / Optimization of a Numerical-Statistical Algorithm for Estimating the Mean Particle Flow in a Bounded Random Medium with Multiplication. в: Computational Mathematics and Mathematical Physics. 2024 ; Том 64, № 11. стр. 2705-2715.

BibTeX

@article{8993763c9df4485c97a41006f8250c58,
title = "Optimization of a Numerical-Statistical Algorithm for Estimating the Mean Particle Flow in a Bounded Random Medium with Multiplication",
abstract = "Approximations of random functions are studied, which are numerically simulated to investigate the stochastic process of particle transport, including problems concerning fluctuations of criticality parameters in random multiplying media. For an isotropic random field, a simple grid model reproducing the efficient average correlation length is formulated, which ensures high accuracy of the solution of stochastic transport problems for small correlation lengths. The proposed algorithms are tested by estimating the superexponential mean particle flow in a random multiplying medium. ",
keywords = "Voronoi field, computational cost, error of estimates, grid approximation, numerical statistical simulation, particle flow, random medium, superexponential asymptotics, computational cost, error of estimates, grid approximation, numerical statistical simulation, particle flow, random medium, superexponential asymptotics, Voronoi field",
author = "Lotova, {G. Z.} and Mikhailov, {G. A.} and Rozhenko, {S. A.}",
note = "Сведения о финансировании Siberian Branch, Russian Academy of Sciences FWNM-2022-0002",
year = "2024",
month = dec,
day = "25",
doi = "10.1134/S0965542524701422",
language = "English",
volume = "64",
pages = "2705--2715",
journal = "Computational Mathematics and Mathematical Physics",
issn = "0965-5425",
publisher = "PLEIADES PUBLISHING INC",
number = "11",

}

RIS

TY - JOUR

T1 - Optimization of a Numerical-Statistical Algorithm for Estimating the Mean Particle Flow in a Bounded Random Medium with Multiplication

AU - Lotova, G. Z.

AU - Mikhailov, G. A.

AU - Rozhenko, S. A.

N1 - Сведения о финансировании Siberian Branch, Russian Academy of Sciences FWNM-2022-0002

PY - 2024/12/25

Y1 - 2024/12/25

N2 - Approximations of random functions are studied, which are numerically simulated to investigate the stochastic process of particle transport, including problems concerning fluctuations of criticality parameters in random multiplying media. For an isotropic random field, a simple grid model reproducing the efficient average correlation length is formulated, which ensures high accuracy of the solution of stochastic transport problems for small correlation lengths. The proposed algorithms are tested by estimating the superexponential mean particle flow in a random multiplying medium.

AB - Approximations of random functions are studied, which are numerically simulated to investigate the stochastic process of particle transport, including problems concerning fluctuations of criticality parameters in random multiplying media. For an isotropic random field, a simple grid model reproducing the efficient average correlation length is formulated, which ensures high accuracy of the solution of stochastic transport problems for small correlation lengths. The proposed algorithms are tested by estimating the superexponential mean particle flow in a random multiplying medium.

KW - Voronoi field

KW - computational cost

KW - error of estimates

KW - grid approximation

KW - numerical statistical simulation

KW - particle flow

KW - random medium

KW - superexponential asymptotics

KW - computational cost

KW - error of estimates

KW - grid approximation

KW - numerical statistical simulation

KW - particle flow

KW - random medium

KW - superexponential asymptotics

KW - Voronoi field

UR - https://www.mendeley.com/catalogue/126f49f2-b59c-3d34-ac34-f8775757b4ab/

UR - https://www.scopus.com/record/display.uri?eid=2-s2.0-85212937709&origin=inward&txGid=f3a4c2a0eeb7bb4430d479ab8630d776

U2 - 10.1134/S0965542524701422

DO - 10.1134/S0965542524701422

M3 - Article

VL - 64

SP - 2705

EP - 2715

JO - Computational Mathematics and Mathematical Physics

JF - Computational Mathematics and Mathematical Physics

SN - 0965-5425

IS - 11

ER -

ID: 61414605