Standard

Optical frequency comb generation induced by gain-through-losses modulation instability in passive optical cavities. / Bessin, Florent; Perego, Auro M.; Staliunas, Kestutis и др.

European Quantum Electronics Conference, EQEC_2019. OSA - The Optical Society, 2019. 2019-ed_p_22 (Optics InfoBase Conference Papers; Том Part F143-EQEC 2019).

Результаты исследований: Публикации в книгах, отчётах, сборниках, трудах конференцийстатья в сборнике материалов конференциинаучнаяРецензирование

Harvard

Bessin, F, Perego, AM, Staliunas, K, Turitsyn, SK, Kudlinski, A, Conforti, M & Mussot, A 2019, Optical frequency comb generation induced by gain-through-losses modulation instability in passive optical cavities. в European Quantum Electronics Conference, EQEC_2019., 2019-ed_p_22, Optics InfoBase Conference Papers, Том. Part F143-EQEC 2019, OSA - The Optical Society, European Quantum Electronics Conference, EQEC_2019, Munich, Великобритания, 23.06.2019.

APA

Bessin, F., Perego, A. M., Staliunas, K., Turitsyn, S. K., Kudlinski, A., Conforti, M., & Mussot, A. (2019). Optical frequency comb generation induced by gain-through-losses modulation instability in passive optical cavities. в European Quantum Electronics Conference, EQEC_2019 [2019-ed_p_22] (Optics InfoBase Conference Papers; Том Part F143-EQEC 2019). OSA - The Optical Society.

Vancouver

Bessin F, Perego AM, Staliunas K, Turitsyn SK, Kudlinski A, Conforti M и др. Optical frequency comb generation induced by gain-through-losses modulation instability in passive optical cavities. в European Quantum Electronics Conference, EQEC_2019. OSA - The Optical Society. 2019. 2019-ed_p_22. (Optics InfoBase Conference Papers).

Author

Bessin, Florent ; Perego, Auro M. ; Staliunas, Kestutis и др. / Optical frequency comb generation induced by gain-through-losses modulation instability in passive optical cavities. European Quantum Electronics Conference, EQEC_2019. OSA - The Optical Society, 2019. (Optics InfoBase Conference Papers).

BibTeX

@inproceedings{33e1d9fe93e3452fa853d7881f79a24f,
title = "Optical frequency comb generation induced by gain-through-losses modulation instability in passive optical cavities",
abstract = "Optical frequency combs consist in a set of equally spaced mutually coherent laser frequency lines with a wealth of applications in the most diverse fields of photonics technology including metrology, astrophysics and molecular spectroscopy. Mode-locked lasers and passive driven resonators are the most relevant platforms for their generation. In Kerr resonators, in general frequency combs are generated through four wave mixing triggered by modulation instability (MI) in the anomalous dispersion regime [1]. In this case however the comb repetition rate is not tuneable but it is simply determined by the cavity free spectral range. We present here experimental results about a new method for frequency combs, with tuneable repetition rate, generation in normal dispersion externally driven passive optical resonators with Kerr (cubic) nonlinearity. We exploit the gain-through-losses (GTL) process to excite a modulation instability (MI) which initiates the comb formation. GTL enables energy transfer from a powerful pump field to sidebands frequencies thanks to frequency asymmetric spectral losses for signal and idler waves. The lossy modes themselves are counterintuitively amplified in virtue of the losses presence [2]. We performed an experiment considering a ring fibre resonator of 104 m length, made with a normal dispersion fiber with group velocity dispersion coefficient β2=0.5 ps2/km. The resonator was pumped at 1545 nm by a continuous wave laser. A fiber Bragg grating (FBG) with reflection peak located at 400 GHz frequency shift from the pump was used in reflection as a filter with spectral asymmetry with respect to the pump, inducing losses only to the signal (the filter causes no losses to the idler). The GTL MI causes first amplification of frequencies located close to the maximum losses (signal) and to their symmetric with respect to the pump wavelength (idler), which in turn generate higher order harmonics through a cascaded four-wave mixing process hence generating the comb (See Fig. 1(a)). The presence of the unavoidable filter phase contribution is responsible for the shift of the first sideband from the frequency corresponding to the maximum attenuation of the filter. The number of comb lines is limited by the low finesse of our resonator, but could be potentially improved in the future. In the time domain, the waveform corresponds to a train of pulses on the finite background (See Fig. 1(b)). The pulses have a repetition rate related to the inverse of the frequency shift between the first GTL sideband and the pump. Due to the fact that the GTL MI induces amplification of sidebands located close to the filter maximum losses frequency, by changing the detuning between pump and filter it is possible to tune the comb repetition rate. We have indeed verified a tuneability of the comb repetition rate by approximately 100 GHz.",
author = "Florent Bessin and Perego, {Auro M.} and Kestutis Staliunas and Turitsyn, {Sergei K.} and Alexandre Kudlinski and Matteo Conforti and Arnaud Mussot",
year = "2019",
month = jan,
day = "1",
language = "English",
series = "Optics InfoBase Conference Papers",
publisher = "OSA - The Optical Society",
booktitle = "European Quantum Electronics Conference, EQEC_2019",
note = "European Quantum Electronics Conference, EQEC_2019 ; Conference date: 23-06-2019 Through 27-06-2019",

}

RIS

TY - GEN

T1 - Optical frequency comb generation induced by gain-through-losses modulation instability in passive optical cavities

AU - Bessin, Florent

AU - Perego, Auro M.

AU - Staliunas, Kestutis

AU - Turitsyn, Sergei K.

AU - Kudlinski, Alexandre

AU - Conforti, Matteo

AU - Mussot, Arnaud

PY - 2019/1/1

Y1 - 2019/1/1

N2 - Optical frequency combs consist in a set of equally spaced mutually coherent laser frequency lines with a wealth of applications in the most diverse fields of photonics technology including metrology, astrophysics and molecular spectroscopy. Mode-locked lasers and passive driven resonators are the most relevant platforms for their generation. In Kerr resonators, in general frequency combs are generated through four wave mixing triggered by modulation instability (MI) in the anomalous dispersion regime [1]. In this case however the comb repetition rate is not tuneable but it is simply determined by the cavity free spectral range. We present here experimental results about a new method for frequency combs, with tuneable repetition rate, generation in normal dispersion externally driven passive optical resonators with Kerr (cubic) nonlinearity. We exploit the gain-through-losses (GTL) process to excite a modulation instability (MI) which initiates the comb formation. GTL enables energy transfer from a powerful pump field to sidebands frequencies thanks to frequency asymmetric spectral losses for signal and idler waves. The lossy modes themselves are counterintuitively amplified in virtue of the losses presence [2]. We performed an experiment considering a ring fibre resonator of 104 m length, made with a normal dispersion fiber with group velocity dispersion coefficient β2=0.5 ps2/km. The resonator was pumped at 1545 nm by a continuous wave laser. A fiber Bragg grating (FBG) with reflection peak located at 400 GHz frequency shift from the pump was used in reflection as a filter with spectral asymmetry with respect to the pump, inducing losses only to the signal (the filter causes no losses to the idler). The GTL MI causes first amplification of frequencies located close to the maximum losses (signal) and to their symmetric with respect to the pump wavelength (idler), which in turn generate higher order harmonics through a cascaded four-wave mixing process hence generating the comb (See Fig. 1(a)). The presence of the unavoidable filter phase contribution is responsible for the shift of the first sideband from the frequency corresponding to the maximum attenuation of the filter. The number of comb lines is limited by the low finesse of our resonator, but could be potentially improved in the future. In the time domain, the waveform corresponds to a train of pulses on the finite background (See Fig. 1(b)). The pulses have a repetition rate related to the inverse of the frequency shift between the first GTL sideband and the pump. Due to the fact that the GTL MI induces amplification of sidebands located close to the filter maximum losses frequency, by changing the detuning between pump and filter it is possible to tune the comb repetition rate. We have indeed verified a tuneability of the comb repetition rate by approximately 100 GHz.

AB - Optical frequency combs consist in a set of equally spaced mutually coherent laser frequency lines with a wealth of applications in the most diverse fields of photonics technology including metrology, astrophysics and molecular spectroscopy. Mode-locked lasers and passive driven resonators are the most relevant platforms for their generation. In Kerr resonators, in general frequency combs are generated through four wave mixing triggered by modulation instability (MI) in the anomalous dispersion regime [1]. In this case however the comb repetition rate is not tuneable but it is simply determined by the cavity free spectral range. We present here experimental results about a new method for frequency combs, with tuneable repetition rate, generation in normal dispersion externally driven passive optical resonators with Kerr (cubic) nonlinearity. We exploit the gain-through-losses (GTL) process to excite a modulation instability (MI) which initiates the comb formation. GTL enables energy transfer from a powerful pump field to sidebands frequencies thanks to frequency asymmetric spectral losses for signal and idler waves. The lossy modes themselves are counterintuitively amplified in virtue of the losses presence [2]. We performed an experiment considering a ring fibre resonator of 104 m length, made with a normal dispersion fiber with group velocity dispersion coefficient β2=0.5 ps2/km. The resonator was pumped at 1545 nm by a continuous wave laser. A fiber Bragg grating (FBG) with reflection peak located at 400 GHz frequency shift from the pump was used in reflection as a filter with spectral asymmetry with respect to the pump, inducing losses only to the signal (the filter causes no losses to the idler). The GTL MI causes first amplification of frequencies located close to the maximum losses (signal) and to their symmetric with respect to the pump wavelength (idler), which in turn generate higher order harmonics through a cascaded four-wave mixing process hence generating the comb (See Fig. 1(a)). The presence of the unavoidable filter phase contribution is responsible for the shift of the first sideband from the frequency corresponding to the maximum attenuation of the filter. The number of comb lines is limited by the low finesse of our resonator, but could be potentially improved in the future. In the time domain, the waveform corresponds to a train of pulses on the finite background (See Fig. 1(b)). The pulses have a repetition rate related to the inverse of the frequency shift between the first GTL sideband and the pump. Due to the fact that the GTL MI induces amplification of sidebands located close to the filter maximum losses frequency, by changing the detuning between pump and filter it is possible to tune the comb repetition rate. We have indeed verified a tuneability of the comb repetition rate by approximately 100 GHz.

UR - http://www.scopus.com/inward/record.url?scp=85084556936&partnerID=8YFLogxK

M3 - Conference contribution

AN - SCOPUS:85084556936

T3 - Optics InfoBase Conference Papers

BT - European Quantum Electronics Conference, EQEC_2019

PB - OSA - The Optical Society

T2 - European Quantum Electronics Conference, EQEC_2019

Y2 - 23 June 2019 through 27 June 2019

ER -

ID: 24311281