Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
Operator-Orthoregressive Method for Identifying Coefficients of Linear Differential Equations. / Lomov, A. A.
в: Journal of Mathematical Sciences (United States), Том 253, № 3, 03.2021, стр. 391-406.Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
}
TY - JOUR
T1 - Operator-Orthoregressive Method for Identifying Coefficients of Linear Differential Equations
AU - Lomov, A. A.
N1 - Publisher Copyright: © 2021, Springer Science+Business Media, LLC, part of Springer Nature. Copyright: Copyright 2021 Elsevier B.V., All rights reserved.
PY - 2021/3
Y1 - 2021/3
N2 - We propose an approach to identify coefficients of linear differential equations from observations of solutions with additive perturbations, based on the algebraic Fliess–Sira-Ramirez method combined with the orthogonal regression method in the space of observed functions that are transformed by convolution type integral operators. We establish the consistency of the operator-orthoregressive method and numerically analyze asymptotical properties and computational complexity of the proposed method in comparison with the asymptotically optimal variational method of identification.
AB - We propose an approach to identify coefficients of linear differential equations from observations of solutions with additive perturbations, based on the algebraic Fliess–Sira-Ramirez method combined with the orthogonal regression method in the space of observed functions that are transformed by convolution type integral operators. We establish the consistency of the operator-orthoregressive method and numerically analyze asymptotical properties and computational complexity of the proposed method in comparison with the asymptotically optimal variational method of identification.
UR - http://www.scopus.com/inward/record.url?scp=85100636759&partnerID=8YFLogxK
U2 - 10.1007/s10958-021-05237-1
DO - 10.1007/s10958-021-05237-1
M3 - Article
AN - SCOPUS:85100636759
VL - 253
SP - 391
EP - 406
JO - Journal of Mathematical Sciences (United States)
JF - Journal of Mathematical Sciences (United States)
SN - 1072-3374
IS - 3
ER -
ID: 27876315