Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
One-Dimensional Finite-Gap Schrödinger Operators As a Limit of Commuting Difference Operators. / Mauleshova, G. S.; Mironov, A. E.
в: Doklady Mathematics, Том 108, № 1, 13, 08.2023, стр. 312-315.Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
}
TY - JOUR
T1 - One-Dimensional Finite-Gap Schrödinger Operators As a Limit of Commuting Difference Operators
AU - Mauleshova, G. S.
AU - Mironov, A. E.
N1 - This work was supported by the Russian Science Foundation, project no. 21-41-00018.
PY - 2023/8
Y1 - 2023/8
N2 - In this paper we show that the one-dimensional finite-gap Schrödinger operator can be obtained via passage to the limit from a second-order difference operator that commutes with some odd-order difference operator; the coefficients of these difference operators are functions defined on the line and depend on a small parameter. Moreover, the spectral curve of the difference operators does not depend on the small parameter and coincides with the spectral curve of the Schrödinger operator.
AB - In this paper we show that the one-dimensional finite-gap Schrödinger operator can be obtained via passage to the limit from a second-order difference operator that commutes with some odd-order difference operator; the coefficients of these difference operators are functions defined on the line and depend on a small parameter. Moreover, the spectral curve of the difference operators does not depend on the small parameter and coincides with the spectral curve of the Schrödinger operator.
KW - commuting difference operators
KW - commuting differential operators
KW - one-dimensional Schrödinger operator
UR - https://www.scopus.com/record/display.uri?eid=2-s2.0-85178462000&origin=inward&txGid=0f0d20d63486519bf5a3cb6f45c9d7cb
UR - https://elibrary.ru/item.asp?id=64279423
UR - https://www.mendeley.com/catalogue/7c488900-5415-33e1-b540-38234b33b5df/
U2 - 10.1134/S1064562423700904
DO - 10.1134/S1064562423700904
M3 - Article
VL - 108
SP - 312
EP - 315
JO - Doklady Mathematics
JF - Doklady Mathematics
SN - 1064-5624
IS - 1
M1 - 13
ER -
ID: 59554680