Standard

On wells modeling in filtration problems. / Ivanov, Maxim I.; Kremer, Igor A.; Laevsky, Yuri M.

в: Сибирские электронные математические известия, Том 16, № 16, 06.12.2019, стр. 1868-1884.

Результаты исследований: Научные публикации в периодических изданияхстатьяРецензирование

Harvard

Ivanov, MI, Kremer, IA & Laevsky, YM 2019, 'On wells modeling in filtration problems', Сибирские электронные математические известия, Том. 16, № 16, стр. 1868-1884. https://doi.org/10.33048/semi.2019.16.133

APA

Ivanov, M. I., Kremer, I. A., & Laevsky, Y. M. (2019). On wells modeling in filtration problems. Сибирские электронные математические известия, 16(16), 1868-1884. https://doi.org/10.33048/semi.2019.16.133

Vancouver

Ivanov MI, Kremer IA, Laevsky YM. On wells modeling in filtration problems. Сибирские электронные математические известия. 2019 дек. 6;16(16):1868-1884. doi: 10.33048/semi.2019.16.133

Author

Ivanov, Maxim I. ; Kremer, Igor A. ; Laevsky, Yuri M. / On wells modeling in filtration problems. в: Сибирские электронные математические известия. 2019 ; Том 16, № 16. стр. 1868-1884.

BibTeX

@article{0a77d85aafe343bfbad83d37455ef85b,
title = "On wells modeling in filtration problems",
abstract = "The work is devoted to one of the approaches of wells modeling within numerical oil reservoir simulation. The approach can be consider as fictitious domain method at mixed finite element approximation, which is used for non-stationary ?ltration processes of two phase fluid in Bukley - Leverett problem. The numerical results are compared with the results for the problem with usual Neumann conditions at the wells boundaries.",
keywords = "Filtration problem, Flow velocity, Injection well, Mixed finite element method, Pressure, Production well, Saturation, Single phase liquid, Two phase liquid, single phase liquid, injection well, filtration problem, BLOCK PRESSURES, pressure, PARABOLIC PROBLEMS, two phase liquid, saturation, production well, SCHEME, FINITE-VOLUME METHOD, mixed finite element method, flow velocity",
author = "Ivanov, {Maxim I.} and Kremer, {Igor A.} and Laevsky, {Yuri M.}",
year = "2019",
month = dec,
day = "6",
doi = "10.33048/semi.2019.16.133",
language = "English",
volume = "16",
pages = "1868--1884",
journal = "Сибирские электронные математические известия",
issn = "1813-3304",
publisher = "Sobolev Institute of Mathematics",
number = "16",

}

RIS

TY - JOUR

T1 - On wells modeling in filtration problems

AU - Ivanov, Maxim I.

AU - Kremer, Igor A.

AU - Laevsky, Yuri M.

PY - 2019/12/6

Y1 - 2019/12/6

N2 - The work is devoted to one of the approaches of wells modeling within numerical oil reservoir simulation. The approach can be consider as fictitious domain method at mixed finite element approximation, which is used for non-stationary ?ltration processes of two phase fluid in Bukley - Leverett problem. The numerical results are compared with the results for the problem with usual Neumann conditions at the wells boundaries.

AB - The work is devoted to one of the approaches of wells modeling within numerical oil reservoir simulation. The approach can be consider as fictitious domain method at mixed finite element approximation, which is used for non-stationary ?ltration processes of two phase fluid in Bukley - Leverett problem. The numerical results are compared with the results for the problem with usual Neumann conditions at the wells boundaries.

KW - Filtration problem

KW - Flow velocity

KW - Injection well

KW - Mixed finite element method

KW - Pressure

KW - Production well

KW - Saturation

KW - Single phase liquid

KW - Two phase liquid

KW - single phase liquid

KW - injection well

KW - filtration problem

KW - BLOCK PRESSURES

KW - pressure

KW - PARABOLIC PROBLEMS

KW - two phase liquid

KW - saturation

KW - production well

KW - SCHEME

KW - FINITE-VOLUME METHOD

KW - mixed finite element method

KW - flow velocity

UR - http://www.scopus.com/inward/record.url?scp=85086097089&partnerID=8YFLogxK

U2 - 10.33048/semi.2019.16.133

DO - 10.33048/semi.2019.16.133

M3 - Article

AN - SCOPUS:85086097089

VL - 16

SP - 1868

EP - 1884

JO - Сибирские электронные математические известия

JF - Сибирские электронные математические известия

SN - 1813-3304

IS - 16

ER -

ID: 24517635