Standard

On volumes of hyperbolic right-angled polyhedra. / Alexandrov, Stepan Andreevich; Bogachev, Nikolay Vladimirovich; Vesnin, Andrei Yurievich и др.

в: Sbornik Mathematics, Том 214, № 2, 2023, стр. 148-165.

Результаты исследований: Научные публикации в периодических изданияхстатьяРецензирование

Harvard

Alexandrov, SA, Bogachev, NV, Vesnin, AY & Egorov, AA 2023, 'On volumes of hyperbolic right-angled polyhedra', Sbornik Mathematics, Том. 214, № 2, стр. 148-165. https://doi.org/10.4213/sm9740e

APA

Alexandrov, S. A., Bogachev, N. V., Vesnin, A. Y., & Egorov, A. A. (2023). On volumes of hyperbolic right-angled polyhedra. Sbornik Mathematics, 214(2), 148-165. https://doi.org/10.4213/sm9740e

Vancouver

Alexandrov SA, Bogachev NV, Vesnin AY, Egorov AA. On volumes of hyperbolic right-angled polyhedra. Sbornik Mathematics. 2023;214(2):148-165. doi: 10.4213/sm9740e

Author

Alexandrov, Stepan Andreevich ; Bogachev, Nikolay Vladimirovich ; Vesnin, Andrei Yurievich и др. / On volumes of hyperbolic right-angled polyhedra. в: Sbornik Mathematics. 2023 ; Том 214, № 2. стр. 148-165.

BibTeX

@article{1d4a48b5bbee4b9ba7c537e7d0e1440a,
title = "On volumes of hyperbolic right-angled polyhedra",
abstract = "New upper bounds for the volumes of right-angled polyhedra in hyperbolic space $\mathbb{H}^3$ are obtained in the following three cases: for ideal polyhedra with all vertices on the ideal hyperbolic boundary; for compact polyhedra with only finite vertices; and for finite-volume polyhedra with vertices of both types. Bibliography: 23 titles.",
author = "Alexandrov, {Stepan Andreevich} and Bogachev, {Nikolay Vladimirovich} and Vesnin, {Andrei Yurievich} and Egorov, {Andrei Aleksandrovich}",
note = "The research of S. A. Alexandrov, N. V. Bogachev and A. A. Egorov was supported by the Theoretical Physics and Mathematics Advancement Foundation “BASIS”. The research of A. Yu. Vesnin was supported by the Ministry of Science and Higher Education of Russia under agreement no. 075-02-2022-884 and by the Theoretical Physics and Mathematics Advancement Foundation “BASIS”. AMS 2020 Mathematics Subject Classification. Primary 52B10, 57K32. Публикация для корректировки.",
year = "2023",
doi = "10.4213/sm9740e",
language = "English",
volume = "214",
pages = "148--165",
journal = "Sbornik Mathematics",
issn = "1064-5616",
publisher = "Turpion Ltd.",
number = "2",

}

RIS

TY - JOUR

T1 - On volumes of hyperbolic right-angled polyhedra

AU - Alexandrov, Stepan Andreevich

AU - Bogachev, Nikolay Vladimirovich

AU - Vesnin, Andrei Yurievich

AU - Egorov, Andrei Aleksandrovich

N1 - The research of S. A. Alexandrov, N. V. Bogachev and A. A. Egorov was supported by the Theoretical Physics and Mathematics Advancement Foundation “BASIS”. The research of A. Yu. Vesnin was supported by the Ministry of Science and Higher Education of Russia under agreement no. 075-02-2022-884 and by the Theoretical Physics and Mathematics Advancement Foundation “BASIS”. AMS 2020 Mathematics Subject Classification. Primary 52B10, 57K32. Публикация для корректировки.

PY - 2023

Y1 - 2023

N2 - New upper bounds for the volumes of right-angled polyhedra in hyperbolic space $\mathbb{H}^3$ are obtained in the following three cases: for ideal polyhedra with all vertices on the ideal hyperbolic boundary; for compact polyhedra with only finite vertices; and for finite-volume polyhedra with vertices of both types. Bibliography: 23 titles.

AB - New upper bounds for the volumes of right-angled polyhedra in hyperbolic space $\mathbb{H}^3$ are obtained in the following three cases: for ideal polyhedra with all vertices on the ideal hyperbolic boundary; for compact polyhedra with only finite vertices; and for finite-volume polyhedra with vertices of both types. Bibliography: 23 titles.

UR - https://www.scopus.com/record/display.uri?eid=2-s2.0-85165630993&origin=inward&txGid=d0f3857061e2d1a47b109707dc2d4293

UR - https://www.mendeley.com/catalogue/09367775-bec7-3d86-9066-e9ade99cc475/

U2 - 10.4213/sm9740e

DO - 10.4213/sm9740e

M3 - Article

VL - 214

SP - 148

EP - 165

JO - Sbornik Mathematics

JF - Sbornik Mathematics

SN - 1064-5616

IS - 2

ER -

ID: 59127609