Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
On the Structure of Laplacian Characteristic Polynomial of Circulant Graphs. / Kwon, Y. S.; Mednykh, A. D.; Mednykh, I. A.
в: Doklady Mathematics, Том 109, № 1, 02.2024, стр. 25-29.Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
}
TY - JOUR
T1 - On the Structure of Laplacian Characteristic Polynomial of Circulant Graphs
AU - Kwon, Y. S.
AU - Mednykh, A. D.
AU - Mednykh, I. A.
N1 - The research of the second and third authors was performed within the state assignment of the Sobolev Institute of Mathematics of the Siberian Branch of the Russian Academy of Sciences, project no. FWNF-2022-0005.
PY - 2024/2
Y1 - 2024/2
N2 - The present work deals with the characteristic polynomial of Laplacian matrix for circulant graphs. We show that it can be decomposed into a finite product of algebraic function evaluated at the roots of a linear combination of Chebyshev polynomials. As an important consequence of this result, we get the periodicity of characteristic polynomials evaluated at the prescribed integer values. Moreover, we can show that the characteristic polynomials of circulant graphs are always perfect squares up to explicitly given linear factors.
AB - The present work deals with the characteristic polynomial of Laplacian matrix for circulant graphs. We show that it can be decomposed into a finite product of algebraic function evaluated at the roots of a linear combination of Chebyshev polynomials. As an important consequence of this result, we get the periodicity of characteristic polynomials evaluated at the prescribed integer values. Moreover, we can show that the characteristic polynomials of circulant graphs are always perfect squares up to explicitly given linear factors.
KW - Laplacian matrix
KW - circulant graph
KW - eigenvalues
KW - rooted spanning tree
UR - https://www.scopus.com/record/display.uri?eid=2-s2.0-85187184179&origin=inward&txGid=3fe078b963ec5e1641e22ecb9bb13d3f
UR - https://www.webofscience.com/wos/woscc/full-record/WOS:001180328000005
UR - https://www.mendeley.com/catalogue/dbbedcf6-d7ab-3389-ba4e-34913af0754b/
U2 - 10.1134/S1064562424701771
DO - 10.1134/S1064562424701771
M3 - Article
VL - 109
SP - 25
EP - 29
JO - Doklady Mathematics
JF - Doklady Mathematics
SN - 1064-5624
IS - 1
ER -
ID: 61201379