Standard

On the solvability of the Dirichlet problem for anisotropic parabolic equations in non-convex domains. / Терсенов, Арис Саввич.

в: Journal of Applied and Industrial Mathematics, Том 25, № 1, 10, 2022, стр. 131-146.

Результаты исследований: Научные публикации в периодических изданияхстатьяРецензирование

Harvard

APA

Vancouver

Терсенов АС. On the solvability of the Dirichlet problem for anisotropic parabolic equations in non-convex domains. Journal of Applied and Industrial Mathematics. 2022;25(1):131-146. 10. doi: 10.33048/SIBJIM.2022.25.110

Author

Терсенов, Арис Саввич. / On the solvability of the Dirichlet problem for anisotropic parabolic equations in non-convex domains. в: Journal of Applied and Industrial Mathematics. 2022 ; Том 25, № 1. стр. 131-146.

BibTeX

@article{c2053ea4eb914c7aa22af503ef1d5861,
title = "On the solvability of the Dirichlet problem for anisotropic parabolic equations in non-convex domains",
abstract = "The Cauchy—Dirichlet problem in non-convex domains for anisotropic parabolic equation with time-dependent exponents and gradient term is considered. We state sufficient conditions that guarantee the existence and uniqueness of a viscosity solution which is Lipschitz continuous in the space variables and H{\"o}lder continuous in time.",
author = "Терсенов, {Арис Саввич}",
note = "Ar. S. Tersenov, “On the solvability of the Dirichlet problem for anisotropic parabolic equations in non-convex domains”, Sib. Zh. Ind. Mat., 25:1 (2022), 131–146.",
year = "2022",
doi = "10.33048/SIBJIM.2022.25.110",
language = "English",
volume = "25",
pages = "131--146",
journal = "Journal of Applied and Industrial Mathematics",
issn = "1990-4789",
publisher = "Maik Nauka-Interperiodica Publishing",
number = "1",

}

RIS

TY - JOUR

T1 - On the solvability of the Dirichlet problem for anisotropic parabolic equations in non-convex domains

AU - Терсенов, Арис Саввич

N1 - Ar. S. Tersenov, “On the solvability of the Dirichlet problem for anisotropic parabolic equations in non-convex domains”, Sib. Zh. Ind. Mat., 25:1 (2022), 131–146.

PY - 2022

Y1 - 2022

N2 - The Cauchy—Dirichlet problem in non-convex domains for anisotropic parabolic equation with time-dependent exponents and gradient term is considered. We state sufficient conditions that guarantee the existence and uniqueness of a viscosity solution which is Lipschitz continuous in the space variables and Hölder continuous in time.

AB - The Cauchy—Dirichlet problem in non-convex domains for anisotropic parabolic equation with time-dependent exponents and gradient term is considered. We state sufficient conditions that guarantee the existence and uniqueness of a viscosity solution which is Lipschitz continuous in the space variables and Hölder continuous in time.

UR - https://www.mendeley.com/catalogue/a91b51f0-6d59-30b3-8d0e-06a8efdc9734/

U2 - 10.33048/SIBJIM.2022.25.110

DO - 10.33048/SIBJIM.2022.25.110

M3 - Article

VL - 25

SP - 131

EP - 146

JO - Journal of Applied and Industrial Mathematics

JF - Journal of Applied and Industrial Mathematics

SN - 1990-4789

IS - 1

M1 - 10

ER -

ID: 36016642