Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
On the quantum mechanical derivation of the Wallis formula for π. / Chashchina, O. I.; Silagadze, Z. K.
в: Physics Letters, Section A: General, Atomic and Solid State Physics, Том 381, № 32, 28.08.2017, стр. 2593-2597.Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
}
TY - JOUR
T1 - On the quantum mechanical derivation of the Wallis formula for π
AU - Chashchina, O. I.
AU - Silagadze, Z. K.
N1 - Publisher Copyright: © 2017 Elsevier B.V.
PY - 2017/8/28
Y1 - 2017/8/28
N2 - We comment on the Friedmann and Hagen's quantum mechanical derivation of the Wallis formula for π. In particular, we demonstrate that not only the Gaussian trial function, used by Friedmann and Hagen, but also the Lorentz trial function can be used to get the Wallis formula. The anatomy of the integrals leading to the appearance of the Wallis ratio is carefully revealed.
AB - We comment on the Friedmann and Hagen's quantum mechanical derivation of the Wallis formula for π. In particular, we demonstrate that not only the Gaussian trial function, used by Friedmann and Hagen, but also the Lorentz trial function can be used to get the Wallis formula. The anatomy of the integrals leading to the appearance of the Wallis ratio is carefully revealed.
KW - Variational methods in quantum mechanics
KW - Wallis formula
KW - INEQUALITIES
UR - http://www.scopus.com/inward/record.url?scp=85020890586&partnerID=8YFLogxK
U2 - 10.1016/j.physleta.2017.06.016
DO - 10.1016/j.physleta.2017.06.016
M3 - Article
AN - SCOPUS:85020890586
VL - 381
SP - 2593
EP - 2597
JO - Physics Letters, Section A: General, Atomic and Solid State Physics
JF - Physics Letters, Section A: General, Atomic and Solid State Physics
SN - 0375-9601
IS - 32
ER -
ID: 9056247