Standard

On the number of autotopies of an n-ary quasigroup of order 4. / Gorkunov, Evgeny V.; Krotov, Denis S.; Potapov, Vladimir N.

в: Quasigroups and Related Systems, Том 27, № 2, 01.01.2019, стр. 227-250.

Результаты исследований: Научные публикации в периодических изданияхстатьяРецензирование

Harvard

Gorkunov, EV, Krotov, DS & Potapov, VN 2019, 'On the number of autotopies of an n-ary quasigroup of order 4', Quasigroups and Related Systems, Том. 27, № 2, стр. 227-250.

APA

Gorkunov, E. V., Krotov, D. S., & Potapov, V. N. (2019). On the number of autotopies of an n-ary quasigroup of order 4. Quasigroups and Related Systems, 27(2), 227-250.

Vancouver

Gorkunov EV, Krotov DS, Potapov VN. On the number of autotopies of an n-ary quasigroup of order 4. Quasigroups and Related Systems. 2019 янв. 1;27(2):227-250.

Author

Gorkunov, Evgeny V. ; Krotov, Denis S. ; Potapov, Vladimir N. / On the number of autotopies of an n-ary quasigroup of order 4. в: Quasigroups and Related Systems. 2019 ; Том 27, № 2. стр. 227-250.

BibTeX

@article{1cfd9c3d07c3487287d284a653a1573a,
title = "On the number of autotopies of an n-ary quasigroup of order 4",
abstract = "An algebraic system consisting of a finite set Σ of cardinality k and an n-ary operation f invertible in each argument is called an n-ary quasigroup of order k. An autotopy of an n-ary quasigroup (Σ, f) is a collection (θ0, θ1, …, θn) of n + 1 permutations of Σ such that f(θ1(x1), …, θn(xn)) ≡ θ0(f(x1, …, xn)). We show that every n-ary quasigroup of order 4 has at least 2[n/2]+2 and not more than 6 · 4n autotopies. We characterize the n-ary quasigroups of order 4 with 2(n+3)/2, 2 · 4n, and 6 · 4n autotopies.",
keywords = "Autotopy group, Latin hypercube, Multiary quasigroup",
author = "Gorkunov, {Evgeny V.} and Krotov, {Denis S.} and Potapov, {Vladimir N.}",
year = "2019",
month = jan,
day = "1",
language = "English",
volume = "27",
pages = "227--250",
journal = "Quasigroups and Related Systems",
issn = "1561-2848",
publisher = "Institute of Mathematics at the Academy of Sciences of Moldova",
number = "2",

}

RIS

TY - JOUR

T1 - On the number of autotopies of an n-ary quasigroup of order 4

AU - Gorkunov, Evgeny V.

AU - Krotov, Denis S.

AU - Potapov, Vladimir N.

PY - 2019/1/1

Y1 - 2019/1/1

N2 - An algebraic system consisting of a finite set Σ of cardinality k and an n-ary operation f invertible in each argument is called an n-ary quasigroup of order k. An autotopy of an n-ary quasigroup (Σ, f) is a collection (θ0, θ1, …, θn) of n + 1 permutations of Σ such that f(θ1(x1), …, θn(xn)) ≡ θ0(f(x1, …, xn)). We show that every n-ary quasigroup of order 4 has at least 2[n/2]+2 and not more than 6 · 4n autotopies. We characterize the n-ary quasigroups of order 4 with 2(n+3)/2, 2 · 4n, and 6 · 4n autotopies.

AB - An algebraic system consisting of a finite set Σ of cardinality k and an n-ary operation f invertible in each argument is called an n-ary quasigroup of order k. An autotopy of an n-ary quasigroup (Σ, f) is a collection (θ0, θ1, …, θn) of n + 1 permutations of Σ such that f(θ1(x1), …, θn(xn)) ≡ θ0(f(x1, …, xn)). We show that every n-ary quasigroup of order 4 has at least 2[n/2]+2 and not more than 6 · 4n autotopies. We characterize the n-ary quasigroups of order 4 with 2(n+3)/2, 2 · 4n, and 6 · 4n autotopies.

KW - Autotopy group

KW - Latin hypercube

KW - Multiary quasigroup

UR - http://www.scopus.com/inward/record.url?scp=85078449851&partnerID=8YFLogxK

M3 - Article

AN - SCOPUS:85078449851

VL - 27

SP - 227

EP - 250

JO - Quasigroups and Related Systems

JF - Quasigroups and Related Systems

SN - 1561-2848

IS - 2

ER -

ID: 23259603