Standard

On the new representation of the virtual braid group. / Alexandrovich, Korobov Alexei; Alexeevich, Korobov Oleg.

в: Сибирские электронные математические известия, Том 16, 01.01.2019, стр. 863-875.

Результаты исследований: Научные публикации в периодических изданияхстатьяРецензирование

Harvard

Alexandrovich, KA & Alexeevich, KO 2019, 'On the new representation of the virtual braid group', Сибирские электронные математические известия, Том. 16, стр. 863-875. https://doi.org/10.33048/semi.2019.16.056

APA

Alexandrovich, K. A., & Alexeevich, K. O. (2019). On the new representation of the virtual braid group. Сибирские электронные математические известия, 16, 863-875. https://doi.org/10.33048/semi.2019.16.056

Vancouver

Alexandrovich KA, Alexeevich KO. On the new representation of the virtual braid group. Сибирские электронные математические известия. 2019 янв. 1;16:863-875. doi: 10.33048/semi.2019.16.056

Author

Alexandrovich, Korobov Alexei ; Alexeevich, Korobov Oleg. / On the new representation of the virtual braid group. в: Сибирские электронные математические известия. 2019 ; Том 16. стр. 863-875.

BibTeX

@article{b374a0e556c545a687719b9962d4b3a4,
title = "On the new representation of the virtual braid group",
abstract = "We propose a representation of the virtual braid group V Bn into the automorphism group of a free product of a free groups and a free Abelian groups. V. G. Bardakov, Yu. A. Mikhalchishina and M. V. Neshchadim proposed a representation ϕM of the virtual braid group V Bn into the automorphism group of a free product of a free group and a free Abelian group. Our representation generalizes this representation ϕM. It is proved that the kernel of new representation is contained in the kernel of representation ϕM. It is proved that natural genetic code of image of the virtual braid group V Bn with respect to new representation has strong symmetry",
keywords = "Braids, Representations by automorphisms, Virtual braids, braids, virtual braids, representations by automorphisms, ALEXANDER GROUPS",
author = "Alexandrovich, {Korobov Alexei} and Alexeevich, {Korobov Oleg}",
year = "2019",
month = jan,
day = "1",
doi = "10.33048/semi.2019.16.056",
language = "English",
volume = "16",
pages = "863--875",
journal = "Сибирские электронные математические известия",
issn = "1813-3304",
publisher = "Sobolev Institute of Mathematics",

}

RIS

TY - JOUR

T1 - On the new representation of the virtual braid group

AU - Alexandrovich, Korobov Alexei

AU - Alexeevich, Korobov Oleg

PY - 2019/1/1

Y1 - 2019/1/1

N2 - We propose a representation of the virtual braid group V Bn into the automorphism group of a free product of a free groups and a free Abelian groups. V. G. Bardakov, Yu. A. Mikhalchishina and M. V. Neshchadim proposed a representation ϕM of the virtual braid group V Bn into the automorphism group of a free product of a free group and a free Abelian group. Our representation generalizes this representation ϕM. It is proved that the kernel of new representation is contained in the kernel of representation ϕM. It is proved that natural genetic code of image of the virtual braid group V Bn with respect to new representation has strong symmetry

AB - We propose a representation of the virtual braid group V Bn into the automorphism group of a free product of a free groups and a free Abelian groups. V. G. Bardakov, Yu. A. Mikhalchishina and M. V. Neshchadim proposed a representation ϕM of the virtual braid group V Bn into the automorphism group of a free product of a free group and a free Abelian group. Our representation generalizes this representation ϕM. It is proved that the kernel of new representation is contained in the kernel of representation ϕM. It is proved that natural genetic code of image of the virtual braid group V Bn with respect to new representation has strong symmetry

KW - Braids

KW - Representations by automorphisms

KW - Virtual braids

KW - braids

KW - virtual braids

KW - representations by automorphisms

KW - ALEXANDER GROUPS

UR - http://www.scopus.com/inward/record.url?scp=85071163228&partnerID=8YFLogxK

UR - https://www.elibrary.ru/item.asp?id=42735100

U2 - 10.33048/semi.2019.16.056

DO - 10.33048/semi.2019.16.056

M3 - Article

AN - SCOPUS:85071163228

VL - 16

SP - 863

EP - 875

JO - Сибирские электронные математические известия

JF - Сибирские электронные математические известия

SN - 1813-3304

ER -

ID: 21348242