Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
On the maximal displacement of catalytic branching random walk. / Bulinskaya, Ekaterina Vladimirovna.
в: Siberian Electronic Mathematical Reports, Том 17, 2020, стр. 1088-1099.Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
}
TY - JOUR
T1 - On the maximal displacement of catalytic branching random walk
AU - Bulinskaya, Ekaterina Vladimirovna
N1 - Publisher Copyright: © 2020. Bulinskaya E.V. All rights reserved. Copyright: Copyright 2021 Elsevier B.V., All rights reserved.
PY - 2020
Y1 - 2020
N2 - We study the distribution of the maximal displacement of particle positions for the whole time of the existence of population in the model of critical and subcritical catalytic branching random walk on ℤ. In particular, we prove that in the case of simple symmetric random walk on ℤ, the distribution of the maximal displacement has a “heavy”tail’, decreasing as a function of the power 1/2 or 1 when the branching process is critical or subcritical, respectively. These statements describe the effects which had not arisen before in related studies on the maximal displacement of critical and subcritical branching random walks on ℤ.
AB - We study the distribution of the maximal displacement of particle positions for the whole time of the existence of population in the model of critical and subcritical catalytic branching random walk on ℤ. In particular, we prove that in the case of simple symmetric random walk on ℤ, the distribution of the maximal displacement has a “heavy”tail’, decreasing as a function of the power 1/2 or 1 when the branching process is critical or subcritical, respectively. These statements describe the effects which had not arisen before in related studies on the maximal displacement of critical and subcritical branching random walks on ℤ.
KW - catalytic branching random walk
KW - critical regime
KW - maximal displacement
KW - subcritical regime
KW - “heavy”tails
KW - "heavy"tails
KW - SPREAD
UR - http://www.scopus.com/inward/record.url?scp=85099224081&partnerID=8YFLogxK
U2 - 10.33048/semi.2020.17.082
DO - 10.33048/semi.2020.17.082
M3 - Article
AN - SCOPUS:85099224081
VL - 17
SP - 1088
EP - 1099
JO - Сибирские электронные математические известия
JF - Сибирские электронные математические известия
SN - 1813-3304
ER -
ID: 27492661