Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
On the luzin N-property and the uncertainty principle for Sobolev mappings. / Ferone, Adele; Korobkov, Mikhail V.; Roviello, Alba.
в: Analysis and PDE, Том 12, № 5, 01.01.2019, стр. 1149-1175.Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
}
TY - JOUR
T1 - On the luzin N-property and the uncertainty principle for Sobolev mappings
AU - Ferone, Adele
AU - Korobkov, Mikhail V.
AU - Roviello, Alba
N1 - Publisher Copyright: © 2019 Mathematical Sciences Publishers.
PY - 2019/1/1
Y1 - 2019/1/1
N2 - We say that a mapping v: ℝn → ℝd satisfies the (τ, σ ) -N-property if Hσ( v (E)) = 0 whenever Hτ (E) = 0, where Hτ means the Hausdorff measure. We prove that every mapping v of Sobolev class W p k (ℝn,ℝd ) with kp > n satisfies the (τ, σ )-N-property for every 0 < τ ≠ τ*: = n - (k -1)p with We prove also that for k > 1 and for the critical value τ = τ* the corresponding (τ, σ )-N-property fails in general. Nevertheless, this (τ, σ )-N-property holds for τ = τ* if we assume in addition that the highest derivatives ∇kv belong to the Lorentz space Lp,1(ℝn ) instead of Lp. We extend these results to the case of fractional Sobolev spaces as well. Also, we establish some Fubini-type theorems for N-Nproperties and discuss their applications to the Morse-Sard theorem and its recent extensions.
AB - We say that a mapping v: ℝn → ℝd satisfies the (τ, σ ) -N-property if Hσ( v (E)) = 0 whenever Hτ (E) = 0, where Hτ means the Hausdorff measure. We prove that every mapping v of Sobolev class W p k (ℝn,ℝd ) with kp > n satisfies the (τ, σ )-N-property for every 0 < τ ≠ τ*: = n - (k -1)p with We prove also that for k > 1 and for the critical value τ = τ* the corresponding (τ, σ )-N-property fails in general. Nevertheless, this (τ, σ )-N-property holds for τ = τ* if we assume in addition that the highest derivatives ∇kv belong to the Lorentz space Lp,1(ℝn ) instead of Lp. We extend these results to the case of fractional Sobolev spaces as well. Also, we establish some Fubini-type theorems for N-Nproperties and discuss their applications to the Morse-Sard theorem and its recent extensions.
KW - Fractional Sobolev classes
KW - Hausdorff measure
KW - Luzin N-property
KW - Morse-Sard theorem
KW - Sobolev-Lorentz mappings
KW - fractional Sobolev classes
KW - SARD THEOREM
KW - DIFFERENTIABILITY
KW - INEQUALITY
KW - DISTORTION
KW - MAPS
KW - HAUSDORFF MEASURES
KW - HOMEOMORPHISM
UR - http://www.scopus.com/inward/record.url?scp=85058893158&partnerID=8YFLogxK
U2 - 10.2140/apde.2019.12.1149
DO - 10.2140/apde.2019.12.1149
M3 - Article
AN - SCOPUS:85058893158
VL - 12
SP - 1149
EP - 1175
JO - Analysis and PDE
JF - Analysis and PDE
SN - 2157-5045
IS - 5
ER -
ID: 17928039